login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356109
Numbers k such that k^2 + {1,3,7,13} are prime.
2
2, 4, 10, 5996, 8894, 11204, 14290, 23110, 30866, 37594, 43054, 64390, 74554, 83464, 93460, 109456, 111940, 132304, 151904, 184706, 238850, 262630, 265990, 277630, 300206, 315410, 352600, 355450, 376190, 404954, 415180, 462830, 483494, 512354, 512704, 566296
OFFSET
1,1
COMMENTS
Conjecture: the sequence is infinite.
EXAMPLE
2^2 + {1,3,7,13} = {5,7,11,17} all prime.
4^2 + {1,3,7,13} = {17,19,23,29} all prime.
MAPLE
q:= k-> andmap(j-> isprime(k^2+j), [1, 3, 7, 13]):
select(q, [$0..1000000])[]; # Alois P. Heinz, Jul 27 2022
MATHEMATICA
Select[Range[500000], AllTrue[#^2 + {1, 3, 7, 13}, PrimeQ] &] (* Amiram Eldar, Jul 27 2022 *)
PROG
(Python)
from sympy import isprime
def ok(n): return all(isprime(n*n+i) for i in {1, 3, 7, 13})
print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 27 2022
CROSSREFS
Intersection of A005574, A049422, A114270, A113536.
Subsequence of A182238.
Sequence in context: A012722 A012616 A012611 * A356175 A133757 A246164
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jul 27 2022
STATUS
approved