The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080149 Numbers k such that k^2 + 1 and k^2 + 3 are both prime. 6
 2, 4, 10, 14, 74, 94, 130, 134, 146, 160, 230, 256, 326, 340, 350, 406, 430, 440, 470, 584, 634, 686, 700, 704, 784, 860, 920, 986, 1054, 1070, 1156, 1210, 1324, 1340, 1354, 1366, 1394, 1420, 1456, 1460, 1564, 1700, 1784, 1816, 1876, 2006, 2080, 2096, 2174 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Hardy and Littlewood conjecture that this sequence is infinite. This sequence is the intersection of A005574 (k such that k^2 + 1 is prime) and A049422 (k such that k^2 + 3 is prime). From Jacques Tramu, Sep 10 2018: (Start) a(10000)    =     2473624;  C = 2.91596513 a(100000)   =    35866246;  C = 2.70591741 a(1000000)  =   483764726;  C = 2.53454683 a(2000000)  =  1049178316;  C = 2.49209641 a(3000000)  =  1647417724;  C = 2.46880647 a(4000000)  =  2267125384;  C = 2.45259161 a(5000000)  =  2903162576;  C = 2.44036006 a(6000000)  =  3551848640;  C = 2.43024082 a(7000000)  =  4212006124;  C = 2.42214552 a(8000000)  =  4881390700;  C = 2.41510010 a(9000000)  =  5559542740;  C = 2.40915933 a(10000000) =  6245573750;  C = 2.40405768 a(20000000) = 13393786900;  C = 2.36959294 a(30000000) = 20908970800;  C = 2.35131696 a(40000000) = 28659267134;  C = 2.33835867 a(50000000) = 36590858294;  C = 2.32865934 C is the quotient a(n) / (n * log(n) * log(n)). (End) REFERENCES P. Ribenboim, "The New Book of Prime Number Records," Springer-Verlag, 1996, p. 408. LINKS Zak Seidov, Table of n, a(n) for n = 1..32898 (terms < 10^7, first 1000 terms from T. D. Noe) G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum'; III: On the expression of a number as a sum of primes, Acta Math., Vol. 44, No. 1 (1923), pp. 1-70. FORMULA Conjecture: a(n) is asymptotic to c*n*log(n)^2 with c around 2.9... - Benoit Cloitre, Apr 16 2004 EXAMPLE 10 is in this sequence because 101 and 103 are both prime. MATHEMATICA lst={}; Do[If[PrimeQ[m^2+1]&&PrimeQ[m^2+3], AppendTo[lst, m]], {m, 3000}]; lst okQ[n_]:=Module[{n2=n^2}, PrimeQ[n2+1]&&PrimeQ[n2+3]]; Select[Range[2200], okQ]  (* Harvey P. Dale, Apr 21 2011 *) PROG (PARI) isA080149(n) = isprime(n^2+1) && isprime(n^2+3) \\ Michael B. Porter, Mar 22 2010 CROSSREFS Cf. A005574, A049422, A145824. Sequence in context: A078775 A351160 A056392 * A217134 A351927 A333619 Adjacent sequences:  A080146 A080147 A080148 * A080150 A080151 A080152 KEYWORD easy,nonn AUTHOR T. D. Noe, Jan 30 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 20:27 EDT 2022. Contains 356148 sequences. (Running on oeis4.)