login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356010
a(n) = n! * Sum_{k=1..n} floor(n/k)/k.
9
1, 5, 23, 134, 814, 6324, 50028, 475824, 4806576, 54597600, 644119200, 8847100800, 121718332800, 1853505158400, 29894856364800, 518855607244800, 9197155541145600, 179420609436364800, 3537039053405491200, 75849875285280768000, 1670700245252548608000
OFFSET
1,2
FORMULA
E.g.f.: (1/(1-x)) * Sum_{k>0} x^k/(k * (1 - x^k)).
E.g.f.: -(1/(1-x)) * Sum_{k>0} log(1 - x^k).
a(n) ~ c * n! * n, where c = Pi^2/6. - Vaclav Kotesovec, Aug 02 2022
a(n) = n! * Sum_{k=1..n} sigma(k)/k. - Seiichi Manyama, Aug 03 2022
PROG
(PARI) a(n) = n!*sum(k=1, n, n\k/k);
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, x^k/(k*(1-x^k)))/(1-x)))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(-sum(k=1, N, log(1-x^k))/(1-x)))
(PARI) a(n) = n!*sum(k=1, n, sigma(k)/k); \\ Seiichi Manyama, Aug 03 2022
CROSSREFS
Sequence in context: A239820 A077240 A281231 * A244786 A129098 A047049
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 23 2022
STATUS
approved