The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A355898 a(1) = a(2) = 1; a(n) = gcd(a(n-1), a(n-2)) + (a(n-1) + a(n-2))/gcd(a(n-1), a(n-2)). 6
 1, 1, 3, 5, 9, 15, 11, 27, 39, 25, 65, 23, 89, 113, 203, 317, 521, 839, 1361, 2201, 3563, 5765, 9329, 15095, 24425, 7909, 32335, 40245, 14521, 54767, 69289, 124057, 193347, 317405, 46443, 363849, 136767, 166875, 101217, 89367, 63531, 50969, 114501, 165471, 93327, 86269, 179597, 265867, 445465, 711333 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Suggested by A351871. Sequence appears to diverge, but it would be nice to have a proof. From Giorgos Kalogeropoulos, Nov 01 2022 : (Start) Conjecture: For n >= 3775 a(n) can also be expressed in the following three ways: 1) a(n) = 1 + a(n-1) + a(n-2). 2) a(n) = 2*a(n-1) - a(n-3). 3) If A = a(3774), B = a(3772) and F = Fibonacci A000045(n), a(n) = (A+1)*F(n-3772) - (B+1)*F(n-3774) - 1. These three formulas only work for n >= 3775. (End) LINKS Seiichi Manyama, Table of n, a(n) for n = 1..5000 (terms 1..1002 from N. J. A. Sloane) Michael De Vlieger, Labeled scalar plot of m = log_2(a(n)), n = 1..2^12, highlighting areas with near-zero second differences of log_2(a(n)) in red, otherwise blue. Labels are indices that begin and end a run of second differences near zero. The third run begins at n approximately 3797 but continues at least to n = 2^16. "Near-zero" means m > 10^-10. Peter Munn, Logarithmic plot of a(n)/A005711(n). (Note that A005711 has essentially constant exponential growth.) Mathematics Stack Exchange user Augusto Santi, A singular variant of the OEIS sequence A349576. Giorgos Kalogeropoulos, After the term a(3773) it appears that the logarithmic graph is a straight line. This happens because the GCD of two successive terms from a(3773) and on is equal to 1. I tested all the terms up to a(10^6). If this holds to infinity then the sequence diverges. Here are the log graphs:  Log plot 5000 terms, Log plot 10000 terms, Log plot 100000 terms. MAPLE A351871 := proc(u, v, M) local n, r, s, g, t, a; a:=[u, v]; r:=u; s:=v; for n from 1 to M do g:=gcd(r, s); t:=g+(r+s)/g; a:=[op(a), t]; r:=s; s:=t; od; a; end proc; A351871(1, 1, 100); MATHEMATICA Nest[Append[#1, #3 + Total[#2]/#3] & @@ {#1, #2, GCD @@ #2} & @@ {#, #[[-2 ;; -1]], GCD[#[[-2 ;; -1]]]} &, {1, 1}, 48] (* Michael De Vlieger, Sep 03 2022 *) PROG (Python) from math import gcd from itertools import islice def A355898_gen(): # generator of terms yield from (a:=(1, 1)) while True: yield (a:=(a[1], (b:=gcd(*a))+sum(a)//b))[1] A355898_list = list(islice(A355898_gen(), 30)) # Chai Wah Wu, Sep 01 2022 (PARI) {a355898(N=50, A1=1, A2=1)= my(a=vector(N)); a[1]=A1; a[2]=A2; for(n=1, N, if(n>2, my(g=gcd(a[n-1], a[n-2])); a[n]=g+(a[n-1]+a[n-2])/g); print1(a[n], ", ")) } \\ Ruud H.G. van Tol, Sep 19 2022 CROSSREFS Cf. A005711, A351871, A355899. Sequence in context: A327562 A071155 A120695 * A103578 A116649 A129771 Adjacent sequences: A355895 A355896 A355897 * A355899 A355900 A355901 KEYWORD nonn AUTHOR N. J. A. Sloane, Sep 01 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 09:36 EDT 2023. Contains 365544 sequences. (Running on oeis4.)