login
A355898
a(1) = a(2) = 1; a(n) = gcd(a(n-1), a(n-2)) + (a(n-1) + a(n-2))/gcd(a(n-1), a(n-2)).
6
1, 1, 3, 5, 9, 15, 11, 27, 39, 25, 65, 23, 89, 113, 203, 317, 521, 839, 1361, 2201, 3563, 5765, 9329, 15095, 24425, 7909, 32335, 40245, 14521, 54767, 69289, 124057, 193347, 317405, 46443, 363849, 136767, 166875, 101217, 89367, 63531, 50969, 114501, 165471, 93327, 86269, 179597, 265867, 445465, 711333
OFFSET
1,3
COMMENTS
Suggested by A351871.
Sequence appears to diverge, but it would be nice to have a proof.
From Giorgos Kalogeropoulos, Nov 01 2022 : (Start)
Conjecture: For n >= 3775 a(n) can also be expressed in the following three ways:
1) a(n) = 1 + a(n-1) + a(n-2).
2) a(n) = 2*a(n-1) - a(n-3).
3) If A = a(3774), B = a(3772) and F = Fibonacci A000045(n),
a(n) = (A+1)*F(n-3772) - (B+1)*F(n-3774) - 1.
These three formulas only work for n >= 3775. (End)
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..5000 (terms 1..1002 from N. J. A. Sloane)
Michael De Vlieger, Labeled scalar plot of m = log_2(a(n)), n = 1..2^12, highlighting areas with near-zero second differences of log_2(a(n)) in red, otherwise blue. Labels are indices that begin and end a run of second differences near zero. The third run begins at n approximately 3797 but continues at least to n = 2^16. "Near-zero" means m > 10^-10.
Peter Munn, Logarithmic plot of a(n)/A005711(n). (Note that A005711 has essentially constant exponential growth.)
Mathematics Stack Exchange user Augusto Santi, A singular variant of the OEIS sequence A349576.
Giorgos Kalogeropoulos, After the term a(3773) it appears that the logarithmic graph is a straight line. This happens because the GCD of two successive terms from a(3773) and on is equal to 1. I tested all the terms up to a(10^6). If this holds to infinity then the sequence diverges. Here are the log graphs: Log plot 5000 terms, Log plot 10000 terms, Log plot 100000 terms.
MAPLE
A351871 := proc(u, v, M) local n, r, s, g, t, a;
a:=[u, v]; r:=u; s:=v;
for n from 1 to M do g:=gcd(r, s); t:=g+(r+s)/g; a:=[op(a), t];
r:=s; s:=t; od;
a;
end proc;
A351871(1, 1, 100);
MATHEMATICA
Nest[Append[#1, #3 + Total[#2]/#3] & @@ {#1, #2, GCD @@ #2} & @@ {#, #[[-2 ;; -1]], GCD[#[[-2 ;; -1]]]} &, {1, 1}, 48] (* Michael De Vlieger, Sep 03 2022 *)
PROG
(Python)
from math import gcd
from itertools import islice
def A355898_gen(): # generator of terms
yield from (a:=(1, 1))
while True: yield (a:=(a[1], (b:=gcd(*a))+sum(a)//b))[1]
A355898_list = list(islice(A355898_gen(), 30)) # Chai Wah Wu, Sep 01 2022
(PARI) {a355898(N=50, A1=1, A2=1)= my(a=vector(N)); a[1]=A1; a[2]=A2; for(n=1, N, if(n>2, my(g=gcd(a[n-1], a[n-2])); a[n]=g+(a[n-1]+a[n-2])/g); print1(a[n], ", ")) } \\ Ruud H.G. van Tol, Sep 19 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 01 2022
STATUS
approved