login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355485
Primes p such that neither g-1 nor g+1 is prime, where g is the gap from p to the next prime.
1
1327, 2477, 3137, 5531, 8467, 9973, 11213, 11743, 12011, 12163, 12347, 14897, 16007, 16493, 16703, 17257, 19087, 20297, 20443, 21433, 24443, 26267, 26513, 29033, 29501, 29683, 31193, 31907, 32653, 32843, 34549, 34781, 35543, 35771, 36161, 36497, 36947, 37061, 37747, 38993, 39581, 40361, 40433
OFFSET
1,1
COMMENTS
Primes prime(i) where A001223(i) is in A061673.
LINKS
EXAMPLE
a(3) = 3137 is a term because 3137 is prime, the next prime is 3163 = 3137+26, and neither 26-1 = 25 nor 26+1 = 27 is prime.
MAPLE
q:= 2:
count:= 0:
R:= NULL:
while count < 100 do
p:= q;
q:= nextprime(q);
g:= q-p;
if not(isprime(g-1) or isprime(g+1)) then
count:= count+1;
R:= R, p
fi
od:
R;
PROG
(PARI) isok(p) = if (isprime(p), my(g=nextprime(p+1)-p); !isprime(g-1) && !isprime(g+1)); \\ Michel Marcus, Jul 05 2022
CROSSREFS
Sequence in context: A202374 A259415 A015162 * A075037 A134116 A122390
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jul 04 2022
STATUS
approved