login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355187
Number of Collatz trajectories (A070165) for all positive integers <= 10^n that contain 2^4 as the greatest power of 2 within its trajectory.
1
6, 89, 933, 9401, 93744, 937712, 9379078, 93773848
OFFSET
1,1
COMMENTS
It is conjectured that lim_{n->infinity} a(n)/10^n = 15/16. Empirically, 93.75% of all trajectories have 2^4 as the greatest power of 2 within its trajectory. Sequence A135282(n) is the maximum power of 2 reached in the Collatz trajectory for integer n.
EXAMPLE
a(1)=6 because the first 10 positive integers have trajectories, of which 6 have 2^4 as the greatest power of 2 in their trajectory.
These integers are 3, 5, 6, 7, 9, 10. See trajectory tables below.
1: 1
2: 2 1
3: 3 10 5 16 8 4 2 1
4: 4 2 1
5: 5 16 8 4 2 1
6: 6 3 10 5 16 8 4 2 1
7: 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
8: 8 4 2 1
9: 9 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
10: 10 5 16 8 4 2 1
MATHEMATICA
collatz[n_] := Module[{}, If[OddQ[n], 3n+1, n/2]]; step[n_] := Module[{p=0, m=n, q}, While[!IntegerQ[q=Log[2, m]], m=collatz[m]; p++]; {p, q}]; Counts[Table[Last@step[n], {n, 1, 10^5}]][[Key[4]]]
CROSSREFS
Sequence in context: A127183 A054952 A101148 * A100297 A177568 A177573
KEYWORD
nonn,more
AUTHOR
Frank M Jackson, Jun 23 2022
STATUS
approved