OFFSET
1,2
COMMENTS
Numbers n such that (690*10^n - 33)/9 is prime.
Numbers n such that digit 7 followed by n >= 0 occurrences of digit 6 followed by digit 3 is prime.
Numbers corresponding to terms <= 878 are certified primes.
a(21) > 10^5. - Robert Price, Oct 14 2015
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
LINKS
FORMULA
a(n) = A103064(n) - 1.
EXAMPLE
73 is prime, hence 0 is a term.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[(690*10^# - 33)/9] &] (* Robert Price, Oct 14 2015 *)
PROG
(PARI) a=73; for(n=0, 1200, if(isprime(a), print1(n, ", ")); a=10*a+33)
(PARI) for(n=0, 1200, if(isprime((690*10^n-33)/9), print1(n, ", ")))
(Magma) [n: n in [0..500] | IsPrime((690*10^n-33) div 9)]; // Vincenzo Librandi, Oct 15 2015
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 03 2004
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
a(18)-a(19) from Erik Branger May 01 2013 by Ray Chandler, Apr 30 2015
a(20) from Robert Price, Oct 14 2015
STATUS
approved