login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355188
Primes p such that (2^p+p^2)/3 is prime.
0
5, 7, 17, 43, 61, 73, 241, 739, 1297, 4211, 98519
OFFSET
1,1
COMMENTS
Intersection with A242929 (primes p such that 2^p-p^2 is prime) includes 5, 7 and 17. Any others?
a(12) > 4*10^5. - Michael S. Branicky, Oct 31 2024
EXAMPLE
a(3) = 17 is a term because (2^17+17^2)/3 = 43787 is prime.
MAPLE
filter:= proc(p) isprime(p) and isprime((2^p+p^2)/3) end proc:
select(filter, [seq(i, i=5..10000, 2)]);
MATHEMATICA
Select[Prime[Range[600]], PrimeQ[(2^# + #^2)/3] &] (* Amiram Eldar, Jun 23 2022 *)
PROG
(PARI) isok(p) = if (isprime(p), my(q=(2^p+p^2)/3); (denominator(q)==1) && ispseudoprime(q)); \\ Michel Marcus, Jun 23 2022
(Python)
from itertools import islice
from sympy import isprime, nextprime
def agen():
p = 2
while True:
t = 2**p+p**2
if t%3 == 0 and isprime(t//3):
yield p
p = nextprime(p)
print(list(islice(agen(), 10))) # Michael S. Branicky, Jun 23 2022
CROSSREFS
Cf. A242929.
Sequence in context: A113282 A323200 A096741 * A106955 A030785 A019404
KEYWORD
nonn,more
AUTHOR
J. M. Bergot and Robert Israel, Jun 23 2022
EXTENSIONS
a(11) from Daniel Suteu, Jun 25 2022
STATUS
approved