|
|
A354859
|
|
a(n) is the numerator of 1/prime(n) + 2/prime(n-1) + 3/prime(n-2) + ... + (n-1)/3 + n/2.
|
|
2
|
|
|
1, 4, 71, 124, 11111, 92402, 257189, 43708274, 2344987003, 1855369084, 2729707472269, 11281836318542, 1705853427969059, 120757830191824486, 1124815045783478971, 118422287191742563724, 1291008724583331399881, 113743044027018860349034, 70575236921156825443680027, 8002471039307070610187173702
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Numerator of a second order prime harmonic number.
|
|
LINKS
|
|
|
FORMULA
|
a(n) is the numerator of Sum_{j=1..n} Sum_{i=1..j} 1/prime(i).
|
|
EXAMPLE
|
1/2, 4/3, 71/30, 124/35, 11111/2310, 92402/15015, 257189/34034, ...
|
|
MATHEMATICA
|
Table[Sum[(n - k + 1)/Prime[k], {k, 1, n}], {n, 1, 20}] // Numerator
|
|
PROG
|
(Python)
from fractions import Fraction
from sympy import prime, primerange
def a(n): return sum(Fraction(n-i, p) for i, p in enumerate(primerange(1, prime(n)+1))).numerator
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|