OFFSET
0,2
LINKS
Stefano Spezia, Table of n, a(n) for n = 0..1500
Index entries for linear recurrences with constant coefficients, signature (8,-13,-16,13,8,1).
FORMULA
a(n) = floor((2+sqrt(5))^n*n).
a(n) = floor(n*phi^(3n)) where phi=(1+sqrt(5))/2 is the golden ratio.
a(n) = floor(n*F(3n-1)+n*phi*F(3n)), where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) = n*L(3n) when n is odd and a(n) = n*L(3n)-1 when n is even (n>=2), where L(n) = A000032(n) is the n-th Lucas number.
G.f.: x*(4 + 3*x - 18*x^3 - 4*x^4 - x^5)/((1 - x)*(1 + x)*(1 - 4*x - x^2)^2). - Stefano Spezia, Jun 12 2022
MATHEMATICA
a[n_] := Floor[n * GoldenRatio^(3*n)]; Array[a, 25, 0] (* Amiram Eldar, Jun 09 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jiale Wang, Jun 09 2022
STATUS
approved