The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A354853 a(1) = 4, a(2) = 9; let i = a(n-2) and j = a(n-1); a(n+1) = k such that (j, k) = 1 and (i, k) = m > 1 and only one of either omega(i) or omega(k) exceed omega(m), where omega = A001221, and neither i | k nor k | i. 1
4, 9, 10, 21, 8, 27, 14, 15, 16, 25, 6, 35, 32, 49, 12, 77, 30, 121, 18, 55, 42, 125, 24, 65, 64, 169, 20, 39, 70, 81, 28, 33, 128, 243, 22, 45, 256, 105, 26, 63, 512, 231, 34, 99, 289, 66, 85, 36, 625, 78, 95, 48, 361, 60, 133, 40, 343, 90, 91, 50, 2197, 110 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
A restriction on the Yellowstone sequence A098550 analogous to A353917 regarding its relationship to A064413. This sequence exhibits phases similar to those in A353917, except between every other term instead of adjacent terms.
Let P = the set of distinct prime divisors of i = a(n-2), and let Q = the set of distinct prime divisors of k = a(n). Let g = gcd(i, k) > 1 and let G = {P intersect Q}. Noncoprime i and k implies |G| > 0. This sequence is such that |G| > 0, |P| > |G|, and |Q| == |G|, or vice versa, yet neither i | k nor k | i.
Theorem: terms are composite. Proof: since divisibility and coprimality between i and k is prohibited and since primes must either divide or be coprime to other numbers, no primes appear in the sequence.
Theorem: even terms cannot be adjacent. Proof: If prime p | j, then p cannot divide k as well, because then (j, k) >= p and by definition of "prime", p > 1, which contradicts the axiom (j, k) = 1. Since 2 is prime, consecutive even terms are prohibited. Hence we start the sequence with {4, 9}.
Theorem: squarefree semiprimes i = pq are followed by k = p^2 or k = q^2. Proof: since omega(i) = |P| = 2 and is squarefree, we have 2 cases pertaining to successor k, both with gcd(i, k) > 1.
1.) |P| == |G| implies |Q| > |G| and |Q| > |P|.
2.) |Q| == |G| implies |P| > |G| and |P| > |Q|.
The first case implies some prime r | k yet gcd(i, r) = 1. But this would require i | k, which is prohibited. The second case suggests either p | k or q | k, but so as to satisfy non-divisibility axiom, we are forced into either k = p^e, e > 1, or k = q^m, m > 1.
LINKS
Michael De Vlieger, Annotated log-log scatterplot of a(n), n = 1..10^4, with records in red, local minima in blue, highlighting composite prime powers in magenta, squarefree semiprimes in gold, and other squarefree numbers in green.
MATHEMATICA
nn = 120; s = {4, 9}; state = {3, 7}; u = 4; c[_] = 0; p[_] = 2; p[2] = p[3] = 3; f[j_, k_] := Which[j == k, 5, GCD[j, k] == 1, 0, True, 1 + FromDigits[Map[Which[Mod[##] == 0, 1, PowerMod[#1, #2, #2] == 0, 2, True, 0] & @@ # &, Permutations[{k, j}]], 3]]; Array[Set[{a[#], c[s[[#]]]}, {s[[#]], #}] &, Length[s]]; While[Nand[c[u] == 0, CompositeQ[u]], u++]; Set[{i, j}, s[[-2 ;; -1]]]; Do[k = u; If[PrimeNu[i] == PrimeOmega[i] == 2, k = Min[Map[#^p[#] &, FactorInteger[i][[All, 1]]]], While[Nand[c[k] == 0, MemberQ[state, f[i, k]], CoprimeQ[j, k]], k++]]; Set[{a[n], c[k], i, j}, {k, n, j, k}]; If[PrimePowerQ@ k, p[FactorInteger[k][[1, 1]]]++]; If[k == u, While[Nand[c[u] == 0, CompositeQ[u]], u++]], {n, Length[s] + 1, nn}]; Array[a, nn]
CROSSREFS
Sequence in context: A336256 A245096 A352097 * A119718 A263648 A051884
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Jun 23 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 04:25 EDT 2024. Contains 372536 sequences. (Running on oeis4.)