OFFSET
1,2
COMMENTS
Numbers k such that there is a prime p such that gpf(k+p) = p (such p must be a prime factor of n).
Numbers k such that there is a prime factor p of k such that k+p is p-smooth.
A076563 sorted and duplicates removed.
LINKS
Jianing Song, Table of n, a(n) for n = 1..8650 (all terms <= 10000)
EXAMPLE
0 is a term because 0 = p - gpf(p) for every prime p.
if k/gpf(k) <= nextprime(gpf(k)) - 2, where nextprime = A151800, then k is a term since k+gpf(k) <= gpf(k)*(nextprime(gpf(k)) - 1) implies gpf(k+gpf(k)) = gpf(k).
PROG
(PARI) gpf(n) = vecmax(factor(n)[, 1]);
isA354514(n) = if(n, my(f=factor(n)[, 1]); for(i=1, #f, if(gpf(n+f[i])==f[i], return(1))); 0, 1)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Aug 16 2022
STATUS
approved