login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354448
11-gonal (or hendecagonal) numbers which are products of two distinct primes.
0
58, 95, 141, 415, 1241, 2101, 2951, 3683, 6031, 7421, 16531, 24383, 35333, 39433, 42001, 50191, 53083, 66551, 83981, 95411, 123421, 146791, 173951, 182911, 190241, 229051, 296321, 307981, 336883, 409361, 442583, 451091, 477101, 500833, 546883, 588431, 669131
OFFSET
1,1
COMMENTS
A squarefree subsequence of 11-gonal numbers, i.e., numbers of the form k*(9*k-7)/2.
EXAMPLE
58 = 4*(9*4 - 7)/2 = 2*29;
141 = 6*(9*6 - 7)/2 = 3*47;
415 = 10*(9*10 - 7)/2 = 5*83;
3683 = 29*(9*29 - 7)/2 = 29*127.
MATHEMATICA
Select[Table[n*(9*n - 7)/2, {n, 1, 400}], FactorInteger[#][[;; , 2]] == {1, 1} &] (* Amiram Eldar, May 30 2022 *)
PROG
(Python)
from sympy import factorint
from itertools import count, islice
def agen():
for h in (k*(9*k - 7)//2 for k in count(1)):
f = factorint(h, multiple=True)
if len(f) == len(set(f)) == 2: yield h
print(list(islice(agen(), 37))) # Michael S. Branicky, May 30 2022
CROSSREFS
Intersection of A051682 and A006881.
Sequence in context: A044033 A266451 A124680 * A181462 A260603 A188238
KEYWORD
nonn
AUTHOR
Massimo Kofler, May 30 2022
STATUS
approved