login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354449
a(n) is the number of pairs of primes (p,q) with p<q such that p+q = 2*n and that 2*n+p, 2*n+q, p*q-2*n and p*q+2*n are primes.
2
0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0
OFFSET
1,15
LINKS
EXAMPLE
a(15) = 2 as there are two such pairs, (7,23) and (13,17): 2*15+7 = 37, 2*15+23 = 53, 7*23-2*15 = 131, 7*23+2*15 = 191, 2*15+13 = 43, 2*15+17 = 47, 13*17-2*15 = 191 and 13*17+2*15 = 251 are all prime.
MAPLE
f:= proc(n) local count, p, q;
p:= 2*n-1 ; count:= 0;
do
p:= prevprime(p);
if p < n then return count fi;
q:= 2*n-p;
if isprime(q) and isprime(2*n+q) and isprime(2*n+p) and isprime(p*q-2*n) and isprime(p*q+2*n) then count:=count+1 fi;
od
end proc:
f(1):= 0: f(2):= 0:
map(f, [$1..100]);
MATHEMATICA
a[n_] := Sum[If[AllTrue[{k, 2*n - k, 2*n + k, 4*n - k, k*(2 n - k) - 2*n, k*(2 n - k) + 2*n}, PrimeQ], 1, 0], {k, 1, n}]; Array[a, 100] (* Amiram Eldar, May 31 2022 *)
PROG
(PARI) a(n) = sum(k=1, n, ispseudoprime(k) && ispseudoprime(2*n-k) && ispseudoprime(2*n+k) && ispseudoprime(4*n-k) && ispseudoprime(k*(2*n-k)-2*n) && ispseudoprime(k*(2*n-k)+2*n)) \\ adapted from Mathematica code, Felix Fröhlich, May 31 2022
CROSSREFS
Sequence in context: A349378 A331918 A089803 * A349436 A089811 A091888
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, May 31 2022
STATUS
approved