login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354305
a(n) is the denominator of Sum_{k=0..n} (-1)^k / (k!)^2.
2
1, 1, 4, 9, 192, 1800, 103680, 529200, 232243200, 8230118400, 1463132160000, 39833773056000, 20858412072960000, 1615657835151360000, 584619573580922880000, 1908495817772544000000, 29184209113159670169600000, 3953548328298349068288000000, 185476873609942457647104000000
OFFSET
0,3
FORMULA
Denominators of coefficients in expansion of BesselJ(0,2*sqrt(x)) / (1 - x).
EXAMPLE
1, 0, 1/4, 2/9, 43/192, 403/1800, 23213/103680, 118483/529200, 51997111/232243200, 1842647621/8230118400, ...
MATHEMATICA
Table[Sum[(-1)^k/(k!)^2, {k, 0, n}], {n, 0, 18}] // Denominator
nmax = 18; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator
Accumulate[Table[(-1)^k/(k!)^2, {k, 0, 20}]]//Denominator (* Harvey P. Dale, Apr 25 2023 *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Ilya Gutkovskiy, May 23 2022
STATUS
approved