Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Apr 25 2023 15:02:15
%S 1,1,4,9,192,1800,103680,529200,232243200,8230118400,1463132160000,
%T 39833773056000,20858412072960000,1615657835151360000,
%U 584619573580922880000,1908495817772544000000,29184209113159670169600000,3953548328298349068288000000,185476873609942457647104000000
%N a(n) is the denominator of Sum_{k=0..n} (-1)^k / (k!)^2.
%F Denominators of coefficients in expansion of BesselJ(0,2*sqrt(x)) / (1 - x).
%e 1, 0, 1/4, 2/9, 43/192, 403/1800, 23213/103680, 118483/529200, 51997111/232243200, 1842647621/8230118400, ...
%t Table[Sum[(-1)^k/(k!)^2, {k, 0, n}], {n, 0, 18}] // Denominator
%t nmax = 18; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator
%t Accumulate[Table[(-1)^k/(k!)^2,{k,0,20}]]//Denominator (* _Harvey P. Dale_, Apr 25 2023 *)
%Y Cf. A001044, A053556, A061355, A073701, A091681, A143383, A354303, A354304 (numerators).
%K nonn,frac
%O 0,3
%A _Ilya Gutkovskiy_, May 23 2022