login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A354219
Primes p such that the number of distinct prime factors omega of the product of the composite numbers between p and the next prime after p sets a new record.
1
3, 5, 7, 13, 19, 31, 53, 73, 89, 113, 211, 293, 523, 887, 1129, 1327, 4297, 4831, 5351, 5591, 8467, 12853, 15683, 19609, 25471, 31397, 134513, 155921, 338033, 360653, 370261, 492113, 1349533, 1357201, 1561919, 2010733, 4652353, 8421251, 11113933, 15203977, 17051707
OFFSET
1,1
EXAMPLE
a(6) = 31, because the first product of consecutive composites with 6 primes in its squarefree kernel is P = 32*33*34*35*36 with rad(P) = 2*3*5*7*11*17 = 39270, whereas the interval starting after A354217(6) = 23 leads only to 5 distinct factors, i.e., rad(24*25*26*27*28) = 2*3*5*7*13, not sufficient to beat the record set by the composites after a(5) = A354217(5) = 19 with rad(20*21*22) = 2*3*5*7*11.
MATHEMATICA
s = Array[PrimeNu[Times @@ FactorInteger[Times @@ Range[#1 + 1, #2 - 1]][[All, 1]] & @@ Map[Prime, # + {0, 1}]] &, 10^4]; Prime@ Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, May 20 2022 *)
CROSSREFS
A354220 provides the corresponding values of omega.
Sequence in context: A067829 A084696 A352952 * A330222 A154700 A187872
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, May 20 2022
STATUS
approved