login
A353675
a(n) = 1 if n is an odd number with an even number of distinct prime factors, otherwise 0.
6
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0
OFFSET
1
FORMULA
a(n) = A000035(n) * (1-A092248(n)).
a(n) = A000035(n) - A353673(n).
a(n) >= A353676(n).
EXAMPLE
n = 45 = 3^2 * 5 is an odd number with two distinct prime factors, therefore a(45) = 1.
n = 1155 = 3*5*7*11 is an odd number with four distinct prime factors, therefore a(1155) = 1.
MATHEMATICA
Table[If[OddQ[n]&&EvenQ[PrimeNu[n]], 1, 0], {n, 130}] (* Harvey P. Dale, Feb 07 2024 *)
PROG
(PARI) A353675(n) = ((n%2) && !(omega(n)%2));
CROSSREFS
Characteristic function of {1} UNION A098905.
After n=1 differs from A353676 for the next time at n=1155, where a(1155)=1, while A353676(1155)=0.
Cf. also A353557.
Sequence in context: A014041 A373258 A359465 * A373137 A015868 A323402
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 03 2022
STATUS
approved