login
A353596
Triangle read by rows, T(n, k) = [x^k] (-2)^n*GegenbauerC(n, -1/2, x).
0
1, 0, 2, 2, 0, -2, 0, -4, 0, 4, -2, 0, 12, 0, -10, 0, 12, 0, -40, 0, 28, 4, 0, -60, 0, 140, 0, -84, 0, -40, 0, 280, 0, -504, 0, 264, -10, 0, 280, 0, -1260, 0, 1848, 0, -858, 0, 140, 0, -1680, 0, 5544, 0, -6864, 0, 2860, 28, 0, -1260, 0, 9240, 0, -24024, 0, 25740, 0, -9724
OFFSET
0,3
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 0, 2;
[2] 2, 0, -2;
[3] 0, -4, 0, 4;
[4] -2, 0, 12, 0, -10;
[5] 0, 12, 0, -40, 0, 28;
[6] 4, 0, -60, 0, 140, 0, -84;
[7] 0, -40, 0, 280, 0, -504, 0, 264;
[8] -10, 0, 280, 0, -1260, 0, 1848, 0, -858;
[9] 0, 140, 0, -1680, 0, 5544, 0, -6864, 0, 2860;
.
Unsigned antidiagonals |T(n+k, n-k)|:
[0] 1;
[1] 2, 2;
[2] 2, 4, 2;
[3] 4, 12, 12, 4;
[4] 10, 40, 60, 40, 10;
[5] 28, 140, 280, 280, 140, 28;
[6] 84, 504, 1260, 1680, 1260, 504, 84;
MAPLE
g := n -> (-2)^n*GegenbauerC(n, -1/2, x):
seq(print(seq(coeff(simplify(g(n)), x, k), k = 0..n)), n = 0..9);
MATHEMATICA
s={}; For[n=0, n<11, n++, For[k=0, k<n+1, k++, If[EvenQ[n+k], If[Mod[n+k, 4]==0, AppendTo[s, Binomial[n+k, (n+k)/2]/(1-(n+k))*Binomial[(n+k)/2, k]], AppendTo[s, (-1)*Binomial[n+k, (n+k)/2]/(1-(n+k))*Binomial[(n+k)/2, k]]], AppendTo[s, 0]]]]; s (* Detlef Meya, Oct 03 2023 *)
CROSSREFS
Diagonals (also divided by 2^k): A002420 (main), A028329 (main-2) (also A000984), A005430 (main-4) (also A002457), A002802 (main-6).
Sequence in context: A120439 A248512 A352564 * A182122 A104624 A371711
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, May 06 2022
STATUS
approved