login
A353554
Initial term of a set of consecutive primes {p1, p2, p3, p4, p5} such that Sum_{k=p1..p2} d(k) = Sum_{k=p2..p3} d(k) = Sum_{k=p3..p4} d(k) = Sum_{k=p4..p5} d(k), where d(k) is the number of divisors function A000005.
4
238820129, 2219617987, 3089392231, 4071864457, 4633981813, 4710405229, 4909907729, 5912801617, 5979418121, 6639163651, 7088972563, 7929458543, 8235321617, 8540714341, 8832705757, 10029168811, 10421237143, 10680661877, 11423715839, 12495445649, 12956275471, 13250783867
OFFSET
1,1
LINKS
EXAMPLE
For n=2, the primes are a(2) = p1 = 2219617987, p2 = 2219617991, p3 = 2219617993, p4 = 2219617997 and p5 = 2219617999; the composites k between them have the following numbers of divisors:
.
p1 < k < p2 | p2 < k < p3 | p3 < k < p4 | p4 < k < p5
----------------+-----------------+-----------------+----------------
k d(k) | k d(k) | k d(k) | k d(k)
---------- ---- + ---------- ---- + ---------- ---- + ---------- ----
2219617988 24 | 2219617992 64 | 2219617994 8 | 2219617998 64
2219617989 24 | | 2219617995 32 |
2219617990 16 | | 2219617996 24 |
----------------+-----------------+-----------------+----------------
Sums: 64 | 64 | 64 | 64
----------------+-----------------+-----------------+----------------
.
Sums are equal. Thus 2219617987 is a term.
MATHEMATICA
seq[len_, pmax_] := Module[{s = {}, c = 0, p1 = 2, p2 = 3, sums = Table[0, {4}]}, While[c < len && p1 < pmax, sums = Join[Rest[sums], {Sum[DivisorSigma[0, k], {k, p1 + 1, p2 - 1}] + 4}]; If[SameQ @@ sums, c++; AppendTo[s, NextPrime[p1, -3]]]; p1 = p2; p2 = NextPrime[p2]]; s]; seq[2, 3*10^9] (* Amiram Eldar, May 20 2022 *)
CROSSREFS
Cf. A353552 (sum of two sets are equal), A353553 (sum of three sets are equal).
Sequence in context: A203885 A335591 A234058 * A064869 A016824 A016860
KEYWORD
nonn
AUTHOR
Karl-Heinz Hofmann, May 18 2022
EXTENSIONS
More terms from Hugo Pfoertner, May 18 2022
STATUS
approved