login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353554
Initial term of a set of consecutive primes {p1, p2, p3, p4, p5} such that Sum_{k=p1..p2} d(k) = Sum_{k=p2..p3} d(k) = Sum_{k=p3..p4} d(k) = Sum_{k=p4..p5} d(k), where d(k) is the number of divisors function A000005.
4
238820129, 2219617987, 3089392231, 4071864457, 4633981813, 4710405229, 4909907729, 5912801617, 5979418121, 6639163651, 7088972563, 7929458543, 8235321617, 8540714341, 8832705757, 10029168811, 10421237143, 10680661877, 11423715839, 12495445649, 12956275471, 13250783867
OFFSET
1,1
LINKS
EXAMPLE
For n=2, the primes are a(2) = p1 = 2219617987, p2 = 2219617991, p3 = 2219617993, p4 = 2219617997 and p5 = 2219617999; the composites k between them have the following numbers of divisors:
.
p1 < k < p2 | p2 < k < p3 | p3 < k < p4 | p4 < k < p5
----------------+-----------------+-----------------+----------------
k d(k) | k d(k) | k d(k) | k d(k)
---------- ---- + ---------- ---- + ---------- ---- + ---------- ----
2219617988 24 | 2219617992 64 | 2219617994 8 | 2219617998 64
2219617989 24 | | 2219617995 32 |
2219617990 16 | | 2219617996 24 |
----------------+-----------------+-----------------+----------------
Sums: 64 | 64 | 64 | 64
----------------+-----------------+-----------------+----------------
.
Sums are equal. Thus 2219617987 is a term.
MATHEMATICA
seq[len_, pmax_] := Module[{s = {}, c = 0, p1 = 2, p2 = 3, sums = Table[0, {4}]}, While[c < len && p1 < pmax, sums = Join[Rest[sums], {Sum[DivisorSigma[0, k], {k, p1 + 1, p2 - 1}] + 4}]; If[SameQ @@ sums, c++; AppendTo[s, NextPrime[p1, -3]]]; p1 = p2; p2 = NextPrime[p2]]; s]; seq[2, 3*10^9] (* Amiram Eldar, May 20 2022 *)
CROSSREFS
Cf. A353552 (sum of two sets are equal), A353553 (sum of three sets are equal).
Sequence in context: A203885 A335591 A234058 * A064869 A016824 A016860
KEYWORD
nonn
AUTHOR
Karl-Heinz Hofmann, May 18 2022
EXTENSIONS
More terms from Hugo Pfoertner, May 18 2022
STATUS
approved