login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Initial term of a set of consecutive primes {p1, p2, p3, p4, p5} such that Sum_{k=p1..p2} d(k) = Sum_{k=p2..p3} d(k) = Sum_{k=p3..p4} d(k) = Sum_{k=p4..p5} d(k), where d(k) is the number of divisors function A000005.
4

%I #28 Jul 03 2022 01:56:53

%S 238820129,2219617987,3089392231,4071864457,4633981813,4710405229,

%T 4909907729,5912801617,5979418121,6639163651,7088972563,7929458543,

%U 8235321617,8540714341,8832705757,10029168811,10421237143,10680661877,11423715839,12495445649,12956275471,13250783867

%N Initial term of a set of consecutive primes {p1, p2, p3, p4, p5} such that Sum_{k=p1..p2} d(k) = Sum_{k=p2..p3} d(k) = Sum_{k=p3..p4} d(k) = Sum_{k=p4..p5} d(k), where d(k) is the number of divisors function A000005.

%H Karl-Heinz Hofmann, <a href="/A353554/b353554.txt">Table of n, a(n) for n = 1..579</a>

%e For n=2, the primes are a(2) = p1 = 2219617987, p2 = 2219617991, p3 = 2219617993, p4 = 2219617997 and p5 = 2219617999; the composites k between them have the following numbers of divisors:

%e .

%e p1 < k < p2 | p2 < k < p3 | p3 < k < p4 | p4 < k < p5

%e ----------------+-----------------+-----------------+----------------

%e k d(k) | k d(k) | k d(k) | k d(k)

%e ---------- ---- + ---------- ---- + ---------- ---- + ---------- ----

%e 2219617988 24 | 2219617992 64 | 2219617994 8 | 2219617998 64

%e 2219617989 24 | | 2219617995 32 |

%e 2219617990 16 | | 2219617996 24 |

%e ----------------+-----------------+-----------------+----------------

%e Sums: 64 | 64 | 64 | 64

%e ----------------+-----------------+-----------------+----------------

%e .

%e Sums are equal. Thus 2219617987 is a term.

%t seq[len_, pmax_] := Module[{s = {}, c = 0, p1 = 2, p2 = 3, sums = Table[0, {4}]}, While[c < len && p1 < pmax, sums = Join[Rest[sums], {Sum[DivisorSigma[0, k], {k, p1 + 1, p2 - 1}] + 4}]; If[SameQ @@ sums, c++; AppendTo[s, NextPrime[p1, -3]]]; p1 = p2; p2 = NextPrime[p2]]; s]; seq[2, 3*10^9] (* _Amiram Eldar_, May 20 2022 *)

%Y Cf. A000005, A000040, A133760, A354444.

%Y Cf. A353552 (sum of two sets are equal), A353553 (sum of three sets are equal).

%K nonn

%O 1,1

%A _Karl-Heinz Hofmann_, May 18 2022

%E More terms from _Hugo Pfoertner_, May 18 2022