login
A353481
a(n) = 1 if n is an odd squarefree semiprime, otherwise 0.
8
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0
OFFSET
1
FORMULA
a(n) = A000035(n) * A280710(n).
a(n) = A008966(n) * A353480(n).
a(n) = A064911(n) * A323239(n).
For all n <> 4, a(n) = A353480(n) - A302048(n).
For all n >= 1, a(n) >= A353482(n) >= A353483(n).
MATHEMATICA
Table[If[OddQ[n]&&PrimeOmega[n]==2&&SquareFreeQ[n], 1, 0], {n, 130}] (* Harvey P. Dale, Aug 17 2022 *)
PROG
(PARI) A353481(n) = ((2==bigomega(n)) && (2==omega(n)) && (1==(n%2)));
CROSSREFS
Characteristic function of A046388.
Sequence in context: A359546 A354989 A277161 * A353677 A353676 A340370
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 22 2022
STATUS
approved