OFFSET
0,4
FORMULA
G.f. A(x) satisfies: A(x) = 1 + x * A(x/(1 - x^2)) / (1 - x^2)^2.
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - k, k] a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 30}]
nmax = 30; A[_] = 0; Do[A[x_] = 1 + x A[x/(1 - x^2)]/(1 - x^2)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 06 2022
STATUS
approved