The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A352701 G.f. (1/x)*Series_Reversion( x*(1-x)*(3 - 2*x + sqrt(1+4*x-4*x^2))/4 ). 0
 1, 1, 3, 7, 28, 79, 350, 1075, 5020, 16180, 78023, 259417, 1278340, 4343642, 21740636, 75065787, 380161308, 1328887420, 6792111260, 23975385148, 123448657904, 439228736887, 2275311657814, 8148868193557, 42427160829508 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Essentially an unsigned version of A351771 (after dropping the initial term). a(2*n) = A352383(n) for n >= 0. LINKS Table of n, a(n) for n=0..24. FORMULA The g.f. A(x) satisfies: (1) A(x) = (1/x)*Series_Reversion( x*(1-x)*(3 - 2*x + sqrt(1+4*x-4*x^2))/4 ); (2) (A(x) - A(-x))/2 = x*(A(x)^2 + A(-x)^2)/2; (3) ((A(x) + A(-x))/2)^3 = F(x^2), where F(x) = (1/x)*Series_Reversion( x*(1+x)^3/(1+2*x)^6 ); (4) 1 - x*(A(x) - A(-x))/2 = x/Series_Reversion( x - x*(C(x) + C(-x))/2 ), where C(x) = (1 - sqrt(1-4*x))/2 is the Catalan function (A000108); (5a) (1/A(x) + 1/A(-x))/2 = ( 1 - x*(A(x) - A(-x))/2 )^2; (5b) (1/A(x) - 1/A(-x))/2 = (-x)/(1 - 2*x*(A(x) - A(-x))/2); (6a) (1/A(x)^2 + 1/A(-x)^2)/2 = ( 1 - x*(A(x) - A(-x))/2 )^3. (6b) (1/A(x)^2 - 1/A(-x)^2)/2 = -2*x*(1 - x*(A(x) - A(-x))/2)^2/( 1 - x*(A(x) - A(-x)) ). Let B(x) = Series_Reversion( x*(1-x^2)/(1+x^2)^3 ), then (7) A(x) = (1 - sqrt(1 - 4*x - 4*x*B(x)^2))/(2*x); (8) A(x) - x*A(x)^2 = A(-x) + x*A(-x)^2 = 1 + B(x)^2; (9) 1 - x*(A(x) - A(-x))/2 = 1/(1 + B(x)^2); (10) 1/A(x) = 1/(1 + B(x)^2)^2 - x*(1 + B(x)^2)/(1 - B(x)^2); (10a) (1/A(x) + 1/A(-x))/2 = 1/(1 + B(x)^2)^2; (10b) (1/A(x) - 1/A(-x))/2 = (-x)*(1 + B(x)^2)/(1 - B(x)^2); (11) 1/A(x)^2 = 1/(1 + B(x)^2)^3 - 2*x/(1 - B(x)^4); (11a) (1/A(x)^2 + 1/A(-x)^2)/2 = 1/(1 + B(x)^2)^3; (11b) (1/A(x)^2 - 1/A(-x)^2)/2 = -2*x/(1 - B(x)^4). EXAMPLE G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 28*x^4 + 79*x^5 + 350*x^6 + 1075*x^7 + 5020*x^8 + 16180*x^9 + 78023*x^10 + 259417*x^11 + ... such that A(x) = (1/x)*Series_Reversion(x*G(x)) and A(x*G(x)) = 1/G(x), where G(x) = (1-x)*(3 - 2*x + sqrt(1+4*x-4*x^2))/4, which starts G(x) = 1 - x - x^2 + 3*x^3 - 8*x^4 + 26*x^5 - 92*x^6 + 344*x^7 - 1336*x^8 + 5336*x^9 - 21776*x^10 + ... Let B(x) = Series_Reversion( x*(1-x^2)/(1+x^2)^3 ), B(x) = x + 4*x^3 + 39*x^5 + 496*x^7 + 7180*x^9 + 112236*x^11 + 1846082*x^13 + 31485120*x^15 + ..., then A(x) = 1 + x*A(x)^2 + B(x)^2, where B(x)^2 = x^2 + 8*x^4 + 94*x^6 + 1304*x^8 + 19849*x^10 + 320600*x^12 + 5396108*x^14 + 93615864*x^16 + ... PROG (PARI) {a(n) = my(A = (1/x)*serreverse( x*(1-x)*(3 - 2*x + sqrt(1+4*x-4*x^2 +x*O(x^n) ))/4 )); polcoeff(A, n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A351771, A352383. Sequence in context: A148754 A148755 A148756 * A351771 A148757 A148758 Adjacent sequences: A352698 A352699 A352700 * A352702 A352703 A352704 KEYWORD nonn AUTHOR Paul D. Hanna, Mar 29 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 04:38 EST 2023. Contains 367699 sequences. (Running on oeis4.)