login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352701
G.f. (1/x)*Series_Reversion( x*(1-x)*(3 - 2*x + sqrt(1+4*x-4*x^2))/4 ).
0
1, 1, 3, 7, 28, 79, 350, 1075, 5020, 16180, 78023, 259417, 1278340, 4343642, 21740636, 75065787, 380161308, 1328887420, 6792111260, 23975385148, 123448657904, 439228736887, 2275311657814, 8148868193557, 42427160829508
OFFSET
0,3
COMMENTS
Essentially an unsigned version of A351771 (after dropping the initial term).
a(2*n) = A352383(n) for n >= 0.
FORMULA
The g.f. A(x) satisfies:
(1) A(x) = (1/x)*Series_Reversion( x*(1-x)*(3 - 2*x + sqrt(1+4*x-4*x^2))/4 );
(2) (A(x) - A(-x))/2 = x*(A(x)^2 + A(-x)^2)/2;
(3) ((A(x) + A(-x))/2)^3 = F(x^2), where F(x) = (1/x)*Series_Reversion( x*(1+x)^3/(1+2*x)^6 );
(4) 1 - x*(A(x) - A(-x))/2 = x/Series_Reversion( x - x*(C(x) + C(-x))/2 ), where C(x) = (1 - sqrt(1-4*x))/2 is the Catalan function (A000108);
(5a) (1/A(x) + 1/A(-x))/2 = ( 1 - x*(A(x) - A(-x))/2 )^2;
(5b) (1/A(x) - 1/A(-x))/2 = (-x)/(1 - 2*x*(A(x) - A(-x))/2);
(6a) (1/A(x)^2 + 1/A(-x)^2)/2 = ( 1 - x*(A(x) - A(-x))/2 )^3.
(6b) (1/A(x)^2 - 1/A(-x)^2)/2 = -2*x*(1 - x*(A(x) - A(-x))/2)^2/( 1 - x*(A(x) - A(-x)) ).
Let B(x) = Series_Reversion( x*(1-x^2)/(1+x^2)^3 ), then
(7) A(x) = (1 - sqrt(1 - 4*x - 4*x*B(x)^2))/(2*x);
(8) A(x) - x*A(x)^2 = A(-x) + x*A(-x)^2 = 1 + B(x)^2;
(9) 1 - x*(A(x) - A(-x))/2 = 1/(1 + B(x)^2);
(10) 1/A(x) = 1/(1 + B(x)^2)^2 - x*(1 + B(x)^2)/(1 - B(x)^2);
(10a) (1/A(x) + 1/A(-x))/2 = 1/(1 + B(x)^2)^2;
(10b) (1/A(x) - 1/A(-x))/2 = (-x)*(1 + B(x)^2)/(1 - B(x)^2);
(11) 1/A(x)^2 = 1/(1 + B(x)^2)^3 - 2*x/(1 - B(x)^4);
(11a) (1/A(x)^2 + 1/A(-x)^2)/2 = 1/(1 + B(x)^2)^3;
(11b) (1/A(x)^2 - 1/A(-x)^2)/2 = -2*x/(1 - B(x)^4).
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 28*x^4 + 79*x^5 + 350*x^6 + 1075*x^7 + 5020*x^8 + 16180*x^9 + 78023*x^10 + 259417*x^11 + ...
such that A(x) = (1/x)*Series_Reversion(x*G(x)) and A(x*G(x)) = 1/G(x),
where G(x) = (1-x)*(3 - 2*x + sqrt(1+4*x-4*x^2))/4, which starts
G(x) = 1 - x - x^2 + 3*x^3 - 8*x^4 + 26*x^5 - 92*x^6 + 344*x^7 - 1336*x^8 + 5336*x^9 - 21776*x^10 + ...
Let B(x) = Series_Reversion( x*(1-x^2)/(1+x^2)^3 ),
B(x) = x + 4*x^3 + 39*x^5 + 496*x^7 + 7180*x^9 + 112236*x^11 + 1846082*x^13 + 31485120*x^15 + ...,
then A(x) = 1 + x*A(x)^2 + B(x)^2, where
B(x)^2 = x^2 + 8*x^4 + 94*x^6 + 1304*x^8 + 19849*x^10 + 320600*x^12 + 5396108*x^14 + 93615864*x^16 + ...
PROG
(PARI) {a(n) = my(A = (1/x)*serreverse( x*(1-x)*(3 - 2*x + sqrt(1+4*x-4*x^2 +x*O(x^n) ))/4 ));
polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A148754 A148755 A148756 * A351771 A148757 A148758
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 29 2022
STATUS
approved