login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351771
Given g.f. A(x), the even bisections of both A(x) and A(x)^2 are equal, and the odd bisections of both A(x)^2 and A(x)^3 are equal (after the initial terms).
3
1, 1, -1, 3, -7, 28, -79, 350, -1075, 5020, -16180, 78023, -259417, 1278340, -4343642, 21740636, -75065787, 380161308, -1328887420, 6792111260, -23975385148, 123448657904, -439228736887, 2275311657814, -8148868193557, 42427160829508, -152792221834364
OFFSET
0,4
COMMENTS
a(2*n+1) = A352383(n) for n >= 0.
FORMULA
G.f. A(x) satisfies:
(1a) [x^(2*n)] A(x) = [x^(2*n)] A(x)^2 for n >= 1.
(1b) [x^(2*n+1)] A(x)^2 = [x^(2*n+1)] A(x)^3 for n >= 1.
(1c) [x^(2*n+1)] A(x)^3 = [x^(2*n+1)] A(x)^4 for n >= 1.
(2) (A(x) - A(-x))/2 = x/(A(x)*A(-x)).
(3a) (A(x)^2 + A(-x)^2)/2 = (A(x) + A(-x))/2.
(3b) (A(x)^2 - A(-x)^2)/2 = 2*x + (A(x) - A(-x))^3/2.
(4) A(x)^2 = 2*x + (A(x) + A(-x))/2 + (A(x) - A(-x))^3/2.
(5a) A(x)^2 = 2*x + (A(x)^2 + A(-x)^2)/2 + (A(x) - A(-x))^3/2.
(5b) A(x)^3 = 3*x + (A(x)^3 + A(-x)^3)/2 + (A(x) - A(-x))^3/2.
(5c) A(x)^4 = 4*x + (A(x)^4 + A(-x)^4)/2 + (A(x) - A(-x))^3/2.
(6) A(x)^4 - A(x)^3 = x + x*(A(x) - A(-x)).
(7) A(-x) = (A(x)^2 + sqrt(A(x)^4 - 8*x*A(x)))/(2*A(x)).
(8) (A(x) - A(-x))^3/2 = 4*x*F(x^2), where F(x) = Series_Reversion( x*(1+x)^3/(1+2*x)^6 ).
(9) A(x)^2 - A(x) = Series_Reversion( x - x*(C(x) + C(-x))/2 ), where C(x) = x + C(x)^2 is the Catalan power series (A000108).
(10) A(x) = 1 + Series_Reversion( x*(1+x)*(3 + 2*x + sqrt(1-4*x-4*x^2))/4 ).
(11) 0 = 2*x^2 + A(x)*(1 - A(x))*(1 + 2*A(x))*x + A(x)^4*(1 - A(x))^2.
EXAMPLE
G.f. A(x) = 1 + x - 1*x^2 + 3*x^3 - 7*x^4 + 28*x^5 - 79*x^6 + 350*x^7 - 1075*x^8 + 5020*x^9 - 16180*x^10 + 78023*x^11 + ...
Compare A(x) with the coefficients in the following series expansions:
A(x)^2 = 1 + 2*x - 1*x^2 + 4*x^3 - 7*x^4 + 36*x^5 - 79*x^6 + 444*x^7 - 1075*x^8 + 6324*x^9 - 16180*x^10 + 97872*x^11 + ...
A(x)^3 = 1 + 3*x + 0*x^2 + 4*x^3 - 3*x^4 + 36*x^5 - 40*x^6 + 444*x^7 - 579*x^8 + 6324*x^9 - 9000*x^10 + 97872*x^11 + ...
A(x)^4 = 1 + 4*x + 2*x^2 + 4*x^3 + 3*x^4 + 36*x^5 + 16*x^6 + 444*x^7 + 121*x^8 + 6324*x^9 + 1040*x^10 + 97872*x^11 + ...
which illustrate the properties that the coefficients of x^k for even k in A(x) and A(x)^2 are equal, and that the coefficients of x^k for odd k > 1 in A(x)^2, A(x)^3, and A(x)^4 are equal.
Related series.
(1) Notice that A(x)^2 - A(x) forms an odd function:
A(x)^2 - A(x) = x + x^3 + 8*x^5 + 94*x^7 + 1304*x^9 + 19849*x^11 + 320600*x^13 + 5396108*x^15 + ...
such that the series reversion begins
Series_Reversion( A(x)^2 - A(x) ) = x - x^3 - 5*x^5 - 42*x^7 - 429*x^9 - 4862*x^11 - 58786*x^13 - ...
which equals x - x*(C(x) + C(-x))/2, where C(x) = x + C(x)^2:
C(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 + ...
and is the Catalan power series C(x) = (1 - sqrt(1-4*x))/2.
(2) Also, the coefficients in the following series form a bisection of A(x):
(A(x)^4 - A(x)^3 - x)/2 = x^2 + 3*x^4 + 28*x^6 + 350*x^8 + 5020*x^10 + 78023*x^12 + 1278340*x^14 + ... + A352383(n)*x^(2*n+2) + ...
(3) Further, a series bisection of A(x)^2, A(x)^3, and A(x)^4 is
(A(x) - A(-x))^3/2 = 4*x^3 + 36*x^5 + 444*x^7 + 6324*x^9 + 97872*x^11 + 1598940*x^13 + 27136744*x^15 + ... + 4*A352384(n)*x^(2*n+3) + ...
which is equal to 4*x*F(x^2), where F( x*(1+x)^3/(1+2*x)^6 ) = x, and
F(x) = x + 9*x^2 + 111*x^3 + 1581*x^4 + 24468*x^5 + 399735*x^6 + 6784186*x^7 + ... + A352384(n)*x^(n+1) + ...
with
(F(x)/x)^(1/3) = 1 + 3*x + 28*x^2 + 350*x^3 + 5020*x^4 + 78023*x^5 + 1278340*x^6 + ... + A352383(n)*x^n + ...
(4) The above observations lead to the composition of functions
Series_Reversion(A(x) - 1) = [x - x*(C(x) + C(-x))/2] o (x + x^2)
which is equivalent to
Series_Reversion(A(x) - 1) = x*(1+x)*(3 + 2*x + sqrt(1-4*x-4*x^2))/4.
MATHEMATICA
CoefficientList[1 + InverseSeries[Series[x*(1 + x)*(3 + 2*x + Sqrt[1 - 4*x - 4*x^2])/4, {x, 0, 30}], x], x] (* Vaclav Kotesovec, Mar 15 2022 *)
PROG
(PARI) /* Using Series Reversion */
{a(n) = my(A = 1 + serreverse( x*(1+x)*(3 + 2*x + sqrt(1-4*x-4*x^2 +x^2*O(x^n)))/4)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* From [x^(2*n)] A(x) - A(x)^2 = 0 and [x^(2*n+1)] A(x)^2 - A(x)^3 = 0 */
{a(n) = my(A = 1 + x +x^2*O(x^n));
for(k=2, n, if(k%2==0,
A = A + x^k*polcoeff(A^1 - A^2, k),
A = A + x^k*polcoeff(A^2 - A^3, k)));
polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 14 2022
STATUS
approved