The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A351772 G.f. A(x) = Sum_{n>=0} x^n*F(x)^n/(1 - x*F(x)^(n+4)), where F(x) is the g.f. of A350117. 1
1, 2, 8, 51, 442, 4534, 51182, 613806, 7675397, 98971497, 1306630823, 17575262387, 240012293969, 3319086310532, 46386983964844, 654176372802786, 9297814382343636, 133052398800475776, 1915431497096942109, 27721644693710659258 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
The g.f. A(x) of this sequence can be determined from the g.f. F(x) of A350117 as follows.
(1) A(x) = Sum_{n>=0} x^n*F(x)^(1*n) / (1 - x*F(x)^(1*n+4));
(2) A(x) = Sum_{n>=0} x^n*F(x)^(2*n) / (1 - x*F(x)^(3*n+3));
(3) A(x) = Sum_{n>=0} x^n*F(x)^(3*n) / (1 - x*F(x)^(3*n+2));
(4) A(x) = Sum_{n>=0} x^n*F(x)^(4*n) / (1 - x*F(x)^(1*n+1));
(5) A(x) = Sum_{n>=0} x^(2*n) * F(x)^(n^2+5*n) * (1 - x^2*F(x)^(2*n+5)) / ((1 - x*F(x)^(n+1))*(1 - x*F(x)^(n+4))),
(6) A(x) = Sum_{n>=0} x^(2*n) * F(x)^(3*n^2+5*n) * (1 - x^2*F(x)^(6*n+5)) / ((1 - x*F(x)^(3*n+2))*(1 - x*F(x)^(3*n+3)));
see the example section for the series expansion of F(x).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 8*x^2 + 51*x^3 + 442*x^4 + 4534*x^5 + 51182*x^6 + 613806*x^7 + 7675397*x^8 + 98971497*x^9 + 1306630823*x^10 + ...
such that
(1) A(x) = 1/(1 - x*F(x)^4) + x*F(x)^1/(1 - x*F(x)^5) + x^2*F(x)^2/(1 - x*F(x)^6) + x^3*F(x)^3/(1 - x*F(x)^7) + x^4*F(x)^4/(1 - x*F(x)^8) + ...
(2) A(x) = 1/(1 - x*F(x)^3) + x*F(x)^2/(1 - x*F(x)^6) + x^2*F(x)^4/(1 - x*F(x)^9) + x^3*F(x)^6/(1 - x*F(x)^12) + x^4*F(x)^8/(1 - x*F(x)^15) + ...
(3) A(x) = 1/(1 - x*F(x)^2) + x*F(x)^3/(1 - x*F(x)^5) + x^2*F(x)^6/(1 - x*F(x)^8) + x^3*F(x)^9/(1 - x*F(x)^11) + x^4*F(x)^12/(1 - x*F(x)^14) + ...
(4) A(x) = 1/(1 - x*F(x)^1) + x*F(x)^4/(1 - x*F(x)^2) + x^2*F(x)^8/(1 - x*F(x)^3) + x^3*F(x)^12/(1 - x*F(x)^4) + x^4*F(x)^16/(1 - x*F(x)^5) + ...
where
F(x) = 1 + x + 5*x^2 + 43*x^3 + 443*x^4 + 5009*x^5 + 60104*x^6 + 751778*x^7 + 9696036*x^8 + 128037209*x^9 + 1722632206*x^10 + ... + A350117(n)*x^n + ...
PROG
(PARI) {a(n) = my(F=[1, 1, 0]); for(i=0, n, F=concat(F, 0);
A1 = sum(m=0, #F, x^m*Ser(F)^(2*m)/(1 - x*Ser(F)^(3*m+3)) );
A2 = sum(m=0, #F, x^m*Ser(F)^(4*m)/(1 - x*Ser(F)^(1*m+1)) );
F[#F-1] = polcoeff((A1 - A2)/2, #F); ); polcoeff(A1, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(F=[1, 1, 0]); for(i=0, n, F=concat(F, 0);
A1 = sum(m=0, #F, x^m*Ser(F)^(3*m)/(1 - x*Ser(F)^(3*m+2)) );
A2 = sum(m=0, #F, x^m*Ser(F)^(1*m)/(1 - x*Ser(F)^(1*m+4)) );
F[#F-1] = polcoeff((A1 - A2)/2, #F); ); polcoeff(A1, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A350117.
Sequence in context: A013085 A352271 A352147 * A277506 A059429 A249747
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 18 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 13:40 EDT 2024. Contains 373481 sequences. (Running on oeis4.)