login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351772
G.f. A(x) = Sum_{n>=0} x^n*F(x)^n/(1 - x*F(x)^(n+4)), where F(x) is the g.f. of A350117.
1
1, 2, 8, 51, 442, 4534, 51182, 613806, 7675397, 98971497, 1306630823, 17575262387, 240012293969, 3319086310532, 46386983964844, 654176372802786, 9297814382343636, 133052398800475776, 1915431497096942109, 27721644693710659258
OFFSET
0,2
FORMULA
The g.f. A(x) of this sequence can be determined from the g.f. F(x) of A350117 as follows.
(1) A(x) = Sum_{n>=0} x^n*F(x)^(1*n) / (1 - x*F(x)^(1*n+4));
(2) A(x) = Sum_{n>=0} x^n*F(x)^(2*n) / (1 - x*F(x)^(3*n+3));
(3) A(x) = Sum_{n>=0} x^n*F(x)^(3*n) / (1 - x*F(x)^(3*n+2));
(4) A(x) = Sum_{n>=0} x^n*F(x)^(4*n) / (1 - x*F(x)^(1*n+1));
(5) A(x) = Sum_{n>=0} x^(2*n) * F(x)^(n^2+5*n) * (1 - x^2*F(x)^(2*n+5)) / ((1 - x*F(x)^(n+1))*(1 - x*F(x)^(n+4))),
(6) A(x) = Sum_{n>=0} x^(2*n) * F(x)^(3*n^2+5*n) * (1 - x^2*F(x)^(6*n+5)) / ((1 - x*F(x)^(3*n+2))*(1 - x*F(x)^(3*n+3)));
see the example section for the series expansion of F(x).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 8*x^2 + 51*x^3 + 442*x^4 + 4534*x^5 + 51182*x^6 + 613806*x^7 + 7675397*x^8 + 98971497*x^9 + 1306630823*x^10 + ...
such that
(1) A(x) = 1/(1 - x*F(x)^4) + x*F(x)^1/(1 - x*F(x)^5) + x^2*F(x)^2/(1 - x*F(x)^6) + x^3*F(x)^3/(1 - x*F(x)^7) + x^4*F(x)^4/(1 - x*F(x)^8) + ...
(2) A(x) = 1/(1 - x*F(x)^3) + x*F(x)^2/(1 - x*F(x)^6) + x^2*F(x)^4/(1 - x*F(x)^9) + x^3*F(x)^6/(1 - x*F(x)^12) + x^4*F(x)^8/(1 - x*F(x)^15) + ...
(3) A(x) = 1/(1 - x*F(x)^2) + x*F(x)^3/(1 - x*F(x)^5) + x^2*F(x)^6/(1 - x*F(x)^8) + x^3*F(x)^9/(1 - x*F(x)^11) + x^4*F(x)^12/(1 - x*F(x)^14) + ...
(4) A(x) = 1/(1 - x*F(x)^1) + x*F(x)^4/(1 - x*F(x)^2) + x^2*F(x)^8/(1 - x*F(x)^3) + x^3*F(x)^12/(1 - x*F(x)^4) + x^4*F(x)^16/(1 - x*F(x)^5) + ...
where
F(x) = 1 + x + 5*x^2 + 43*x^3 + 443*x^4 + 5009*x^5 + 60104*x^6 + 751778*x^7 + 9696036*x^8 + 128037209*x^9 + 1722632206*x^10 + ... + A350117(n)*x^n + ...
PROG
(PARI) {a(n) = my(F=[1, 1, 0]); for(i=0, n, F=concat(F, 0);
A1 = sum(m=0, #F, x^m*Ser(F)^(2*m)/(1 - x*Ser(F)^(3*m+3)) );
A2 = sum(m=0, #F, x^m*Ser(F)^(4*m)/(1 - x*Ser(F)^(1*m+1)) );
F[#F-1] = polcoeff((A1 - A2)/2, #F); ); polcoeff(A1, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(F=[1, 1, 0]); for(i=0, n, F=concat(F, 0);
A1 = sum(m=0, #F, x^m*Ser(F)^(3*m)/(1 - x*Ser(F)^(3*m+2)) );
A2 = sum(m=0, #F, x^m*Ser(F)^(1*m)/(1 - x*Ser(F)^(1*m+4)) );
F[#F-1] = polcoeff((A1 - A2)/2, #F); ); polcoeff(A1, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A350117.
Sequence in context: A013085 A352271 A352147 * A277506 A059429 A249747
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 18 2022
STATUS
approved