login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059429
Cumulative boustrophedon transform of 1, 0, 0, 0, ...
3
1, 1, 2, 8, 51, 478, 6178, 105330, 2290069, 61839897, 2030449500, 79661186168, 3680458880352, 197781841355220, 12231649482909444, 862560715175755168, 68799732139319891208, 6162698115430291654438, 615995773861169229993018
OFFSET
0,3
COMMENTS
For n>0, a(n) equals the element in the upper left corner of the matrix equal to the product of n X n matrices given by: Product_{k=1..n} M_k where M_k(r,c)=k+2-r-c when r+c<=k+1 and zeros elsewhere (see example). - Paul D. Hanna, Feb 08 2007
FORMULA
See Maple code for precise description.
EXAMPLE
For n=5, the matrix product:
[1 0 0 0 0] [2 1 0 0 0] [3 2 1 0 0] [4 3 2 1 0] [5 4 3 2 1]
[0 0 0 0 0] [1 0 0 0 0] [2 1 0 0 0] [3 2 1 0 0] [4 3 2 1 0]
[0 0 0 0 0] [0 0 0 0 0] [1 0 0 0 0] [2 1 0 0 0] [3 2 1 0 0]
[0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0] [1 0 0 0 0] [2 1 0 0 0]
[0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0] [1 0 0 0 0]
equals the matrix below with a(5)=478 in the upper left corner:
[478 362 246 138 51]
[__0 __0 __0 __0 _0]
[__0 __0 __0 __0 _0]
[__0 __0 __0 __0 _0]
[__0 __0 __0 __0 _0]
also a(4)=51 will be in the upper right corner.
MAPLE
CBOUS2 := proc(a) option remember; local c, i, j, n, r: if whattype(a) <> list then RETURN([]); fi: n := min( nops(a), 60); for i from 0 to n-1 do c[i, 0] := a[i+1]; od; for i to n-1 do for j to i do c[i, j] := c[i, j-1] + add(c[i-1, i-r], r=1..j); od; od; RETURN([seq(c[i, i], i=0..n-1)]); end:
MATHEMATICA
m[n_, k_] := Table[If[r+c <= k+1, k+2-r-c, 0], {r, 1, n}, {c, 1, n}]; a[0] = 1; a[n_] := (Dot @@ Table[m[n, k], {k, 1, n}])[[1, 1]]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jul 18 2012, after Paul D. Hanna *)
PROG
(PARI) {a(n)=if(n==0, 1, prod(k=1, n, matrix(n, n, r, c, if(r+c<=k+1, k+2-r-c)))[1, 1])} \\ Paul D. Hanna, Feb 08 2007
CROSSREFS
See the triangles in A059431 and A059432.
Sequence in context: A352147 A351772 A277506 * A249747 A191480 A013555
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Jan 31 2001
STATUS
approved