Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 31 2022 09:36:28
%S 1,1,3,7,28,79,350,1075,5020,16180,78023,259417,1278340,4343642,
%T 21740636,75065787,380161308,1328887420,6792111260,23975385148,
%U 123448657904,439228736887,2275311657814,8148868193557,42427160829508
%N G.f. (1/x)*Series_Reversion( x*(1-x)*(3 - 2*x + sqrt(1+4*x-4*x^2))/4 ).
%C Essentially an unsigned version of A351771 (after dropping the initial term).
%C a(2*n) = A352383(n) for n >= 0.
%F The g.f. A(x) satisfies:
%F (1) A(x) = (1/x)*Series_Reversion( x*(1-x)*(3 - 2*x + sqrt(1+4*x-4*x^2))/4 );
%F (2) (A(x) - A(-x))/2 = x*(A(x)^2 + A(-x)^2)/2;
%F (3) ((A(x) + A(-x))/2)^3 = F(x^2), where F(x) = (1/x)*Series_Reversion( x*(1+x)^3/(1+2*x)^6 );
%F (4) 1 - x*(A(x) - A(-x))/2 = x/Series_Reversion( x - x*(C(x) + C(-x))/2 ), where C(x) = (1 - sqrt(1-4*x))/2 is the Catalan function (A000108);
%F (5a) (1/A(x) + 1/A(-x))/2 = ( 1 - x*(A(x) - A(-x))/2 )^2;
%F (5b) (1/A(x) - 1/A(-x))/2 = (-x)/(1 - 2*x*(A(x) - A(-x))/2);
%F (6a) (1/A(x)^2 + 1/A(-x)^2)/2 = ( 1 - x*(A(x) - A(-x))/2 )^3.
%F (6b) (1/A(x)^2 - 1/A(-x)^2)/2 = -2*x*(1 - x*(A(x) - A(-x))/2)^2/( 1 - x*(A(x) - A(-x)) ).
%F Let B(x) = Series_Reversion( x*(1-x^2)/(1+x^2)^3 ), then
%F (7) A(x) = (1 - sqrt(1 - 4*x - 4*x*B(x)^2))/(2*x);
%F (8) A(x) - x*A(x)^2 = A(-x) + x*A(-x)^2 = 1 + B(x)^2;
%F (9) 1 - x*(A(x) - A(-x))/2 = 1/(1 + B(x)^2);
%F (10) 1/A(x) = 1/(1 + B(x)^2)^2 - x*(1 + B(x)^2)/(1 - B(x)^2);
%F (10a) (1/A(x) + 1/A(-x))/2 = 1/(1 + B(x)^2)^2;
%F (10b) (1/A(x) - 1/A(-x))/2 = (-x)*(1 + B(x)^2)/(1 - B(x)^2);
%F (11) 1/A(x)^2 = 1/(1 + B(x)^2)^3 - 2*x/(1 - B(x)^4);
%F (11a) (1/A(x)^2 + 1/A(-x)^2)/2 = 1/(1 + B(x)^2)^3;
%F (11b) (1/A(x)^2 - 1/A(-x)^2)/2 = -2*x/(1 - B(x)^4).
%e G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 28*x^4 + 79*x^5 + 350*x^6 + 1075*x^7 + 5020*x^8 + 16180*x^9 + 78023*x^10 + 259417*x^11 + ...
%e such that A(x) = (1/x)*Series_Reversion(x*G(x)) and A(x*G(x)) = 1/G(x),
%e where G(x) = (1-x)*(3 - 2*x + sqrt(1+4*x-4*x^2))/4, which starts
%e G(x) = 1 - x - x^2 + 3*x^3 - 8*x^4 + 26*x^5 - 92*x^6 + 344*x^7 - 1336*x^8 + 5336*x^9 - 21776*x^10 + ...
%e Let B(x) = Series_Reversion( x*(1-x^2)/(1+x^2)^3 ),
%e B(x) = x + 4*x^3 + 39*x^5 + 496*x^7 + 7180*x^9 + 112236*x^11 + 1846082*x^13 + 31485120*x^15 + ...,
%e then A(x) = 1 + x*A(x)^2 + B(x)^2, where
%e B(x)^2 = x^2 + 8*x^4 + 94*x^6 + 1304*x^8 + 19849*x^10 + 320600*x^12 + 5396108*x^14 + 93615864*x^16 + ...
%o (PARI) {a(n) = my(A = (1/x)*serreverse( x*(1-x)*(3 - 2*x + sqrt(1+4*x-4*x^2 +x*O(x^n) ))/4 ));
%o polcoeff(A,n)}
%o for(n=0,30,print1(a(n),", "))
%Y Cf. A351771, A352383.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Mar 29 2022