login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351921
a(n) is the smallest nonzero number k such that gcd(prime(1)^k + 1, prime(2)^k + 1, ..., prime(n)^k + 1) > 1 and gcd(prime(1)^k + 1, prime(2)^k + 1, ..., prime(n+1)^k + 1) = 1.
0
2, 26, 21, 86, 33, 1238, 4401, 4586, 16161, 18561, 81, 37046, 85478, 180146, 339866
OFFSET
2,1
COMMENTS
Apparently, a(n) = (A307965(n+1) + 1)/2 - 1 for n>=3. - Hugo Pfoertner, Mar 02 2022
MATHEMATICA
a[n_] := Module[{k = 1, p = Prime[Range[n + 1]]}, While[GCD @@ (Most[p]^k + 1) == 1 || GCD @@ (p^k + 1) > 1, k++]; k]; Array[a, 10, 2] (* Amiram Eldar, Feb 26 2022 *)
PROG
(Python)
from sympy import sieve
from math import gcd
from functools import reduce
sieve.extend_to_no(50)
pr = list(sieve._list)
terms = [0]*100
for i in range(2, 85478+1):
k, g, len_f = 1, 2, 0
while g != 1:
k += 1
len_f += 1
g = reduce(gcd, [t**i + 1 for t in pr[:k]])
if len_f > 1 and terms[len_f] == 0:
terms[len_f] = i
print(terms[2:15])
(PARI) isok(k, n) = my(v = vector(n+1, i, prime(i)^k+1)); (gcd(v) == 1) && (gcd(Vec(v, n)) != 1);
a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, Mar 18 2022
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gleb Ivanov, Feb 25 2022
EXTENSIONS
a(15)-a(16) from Jon E. Schoenfield, Mar 01 2022
STATUS
approved