OFFSET
2,1
COMMENTS
Apparently, a(n) = (A307965(n+1) + 1)/2 - 1 for n>=3. - Hugo Pfoertner, Mar 02 2022
MATHEMATICA
a[n_] := Module[{k = 1, p = Prime[Range[n + 1]]}, While[GCD @@ (Most[p]^k + 1) == 1 || GCD @@ (p^k + 1) > 1, k++]; k]; Array[a, 10, 2] (* Amiram Eldar, Feb 26 2022 *)
PROG
(Python)
from sympy import sieve
from math import gcd
from functools import reduce
sieve.extend_to_no(50)
pr = list(sieve._list)
terms = [0]*100
for i in range(2, 85478+1):
k, g, len_f = 1, 2, 0
while g != 1:
k += 1
len_f += 1
g = reduce(gcd, [t**i + 1 for t in pr[:k]])
if len_f > 1 and terms[len_f] == 0:
terms[len_f] = i
print(terms[2:15])
(PARI) isok(k, n) = my(v = vector(n+1, i, prime(i)^k+1)); (gcd(v) == 1) && (gcd(Vec(v, n)) != 1);
a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, Mar 18 2022
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gleb Ivanov, Feb 25 2022
EXTENSIONS
a(15)-a(16) from Jon E. Schoenfield, Mar 01 2022
STATUS
approved