login
A213052
Increasing sequence of primes p such that all of 2,3,5,...,prime(n) are primitive roots mod p.
10
3, 5, 53, 173, 293, 2477, 9173, 22613, 27653, 61613, 74093, 92333, 170957, 360293, 679733, 847997, 2004917, 69009533, 76553573, 138473837, 237536213, 777133013, 883597853, 1728061733, 2050312613, 5534091197, 9447241877, 49107823133, 65315700413
OFFSET
1,1
COMMENTS
a(32) > 10^12. - Dana Jacobsen, Jul 13 2018
LINKS
PROG
(PARI)
N=10^10;
default(primelimit, N);
A=2;
{ forprime (p=3, N,
q = 1;
forprime (a=2, A,
if ( znorder(Mod(a, p)) != p-1, q=0; break() );
);
if ( q, A=nextprime(A+1); print1(p, ", ") );
); }
(Perl)
use Math::Prime::Util ":all";
my($N, $A, $p, $a, @P7) = (10**11, 2);
forprimes { $p=$_;
if ( is_primitive_root(2, $p)
&& ($A < 3 || is_primitive_root(3, $p))
&& ($A < 5 || is_primitive_root(5, $p))
&& ($A < 7 || vecall { is_primitive_root($_, $p) } @P7)
) {
print "$p\n";
$A = next_prime($A);
push @P7, $A if $A >= 7;
}
} 3, $N;
# Dana Jacobsen, Jul 11 2018
CROSSREFS
Sequence in context: A260226 A101149 A056260 * A355016 A260223 A260225
KEYWORD
nonn,hard
AUTHOR
Joerg Arndt, Jun 03 2012
EXTENSIONS
a(20)-a(27) from Joerg Arndt, Apr 10 2016
a(28)-a(29) from Dana Jacobsen, Jul 11 2018
STATUS
approved