login
A351609
Maximal absolute value of the determinant of an n X n symmetric matrix using the integers 1 to n*(n + 1)/2.
5
1, 1, 7, 152, 7113, 745285, 94974369
OFFSET
0,3
COMMENTS
Upper bounds for the next terms can be found by considering all possibilities of choosing matrix entries on the diagonal and applying Gasper's determinant theorem (see references in A085000): a(7) <= 22475584128, a(8) <= 6634478203404, a(9) <= 2647044512044258. - Hugo Pfoertner, Feb 18 2022
FORMULA
a(n) = max(abs(A351147(n)), A351148(n)). - Hugo Pfoertner, Feb 16 2022
EXAMPLE
a(3) = 152:
2 4 6
4 5 1
6 1 3
a(4) = 7113:
2 6 8 9
6 5 10 1
8 10 3 4
9 1 4 7
KEYWORD
nonn,hard,more
AUTHOR
Stefano Spezia, Feb 14 2022
EXTENSIONS
a(5)-a(6) from Hugo Pfoertner, Feb 16 2022
STATUS
approved