login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351608
a(n) = n^10 * Sum_{d^2|n} 1 / d^10.
11
1, 1024, 59049, 1049600, 9765625, 60466176, 282475249, 1074790400, 3486843450, 10000000000, 25937424601, 61977830400, 137858491849, 289254654976, 576650390625, 1100586418176, 2015993900449, 3570527692800, 6131066257801, 10250000000000, 16679880978201
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = p^10*(p^(10*e) - p^(10*floor((e-1)/2)))/(p^10 - 1). - Sebastian Karlsson, Mar 03 2022
Sum_{k=1..n} a(k) ~ c * n^11, where c = zeta(12)/11 = 691*Pi^12/7023641625 = 0.090931... . - Amiram Eldar, Nov 13 2022
MATHEMATICA
f[p_, e_] := p^10*(p^(10*e) - p^(10*Floor[(e - 1)/2]))/(p^10 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 20] (* Amiram Eldar, Nov 13 2022 *)
PROG
(PARI) a(n) = n^10*sumdiv(n, d, if (issquare(d), 1/d^5)); \\ Michel Marcus, Feb 15 2022
CROSSREFS
Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k = 0..10: A046951 (k=0), A340774 (k=1), A351600 (k=2), A351601 (k=3), A351602 (k=4), A351603 (k=5), A351604 (k=6), A351605 (k=7), A351606 (k=8), A351607 (k=9), this sequence (k=10).
Cf. A013670.
Sequence in context: A017684 A008454 A352056 * A030629 A056587 A321819
KEYWORD
nonn,mult
AUTHOR
Wesley Ivan Hurt, Feb 14 2022
STATUS
approved