login
A351557
a(n) = gcd(sigma(n), A019565(n)).
4
1, 3, 2, 1, 2, 3, 2, 1, 1, 3, 6, 7, 14, 3, 6, 1, 2, 3, 2, 1, 2, 3, 6, 1, 1, 21, 2, 7, 10, 3, 2, 1, 2, 3, 6, 13, 2, 15, 2, 1, 14, 3, 2, 7, 26, 3, 6, 1, 1, 3, 6, 1, 2, 15, 6, 1, 2, 3, 6, 7, 2, 3, 26, 1, 2, 3, 34, 1, 2, 3, 6, 1, 2, 3, 2, 35, 2, 21, 10, 1, 11, 3, 6, 1, 2, 33, 30, 1, 2, 3, 14, 7, 2, 3, 30, 1, 2, 3, 78
OFFSET
1,2
FORMULA
a(n) = gcd(A000203(n), A019565(n)) = gcd(A080398(n), A019565(n)).
a(n) = A007947(a(n)).
a(n) = A019565(A351559(n)).
MATHEMATICA
Table[GCD[DivisorSigma[1, n], Times @@ Prime@ Flatten@ Position[Reverse@ IntegerDigits[n, 2], 1]], {n, 99}] (* Michael De Vlieger, Feb 20 2022 *)
PROG
(PARI)
A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
A351557(n) = gcd(sigma(n), A019565(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 19 2022
STATUS
approved