The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A351512 G.f. A(x) = Product_{n>=1} P(n,x), where P(1,x) = 1/sqrt(1 - 4*x), and P(n+1,x) = 1/sqrt(1 - 4*x + 4*x*P(n,x)) for n >= 1. 2
1, 2, 2, 8, 30, 120, 452, 1648, 5910, 21592, 81084, 309264, 1178956, 4476208, 17010568, 64978016, 249438182, 960341912, 3703401484, 14301548880, 55314019492, 214292575376, 831516584504, 3230994776480, 12569343719036, 48949513156080, 190818329097816 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The g.f. of this sequence is motivated by the (known) infinite product identity:
2/L = 2/A062539 = sqrt(1/2) * sqrt(1/2 + (1/2)/sqrt(1/2)) * sqrt(1/2 + (1/2)/sqrt(1/2 + (1/2)/sqrt(1/2))) * sqrt(1/2 + (1/2)/sqrt(1/2 + (1/2)/sqrt(1/2 + (1/2)/sqrt(1/2)))) * ..., where L = A062539 is the Lemniscate constant.
LINKS
Aaron Levin, A Geometric Interpretation of an Infinite Product for the Lemniscate Constant, The American Mathematical Monthly, vol. 113, no. 6, Mathematical Association of America, 2006, pp. 510-20.
FORMULA
A(1/8) = L/2, where L = gamma(1/4)^2/sqrt(8*Pi) = 2.622057554292... is the Lemniscate constant.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 2*x^2 + 8*x^3 + 30*x^4 + 120*x^5 + 452*x^6 + 1648*x^7 + 5910*x^8 + 21592*x^9 + 81084*x^10 + 309264*x^11 + 1178956*x^12 + ...
where
A(x) = 1/sqrt(1-4*x) * 1/sqrt(1-4*x + 4*x/sqrt(1-4*x)) * 1/sqrt(1-4*x + 4*x/sqrt(1-4*x + 4*x/sqrt(1-4*x))) * 1/sqrt(1-4*x + 4*x/sqrt(1-4*x + 4*x/sqrt(1-4*x + 4*x/sqrt(1-4*x)))) * ...
Specific values:
A(1/8) = 1.3110287771460599052324... = L/2, where L is the Lemniscate constant (cf. A062539).
Related series:
log(A(x)) = 2*x + 20*x^3/3 + 64*x^4/4 + 372*x^5/5 + 1440*x^6/6 + 5896*x^7/7 + 22016*x^8/8 + 87284*x^9/9 + 352160*x^10/10 + ...
Related table:
The g.f. A(x) equals Product_{n>=1} P(n,x), where P(1,x) = 1/sqrt(1-4*x), and P(n+1,x) = 1/sqrt(1 - 4*x + 4*x*P(n,x)) for n >= 1.
The table of coefficients of x^k in P(n,x) begins:
n=1: [1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, ...];
n=2: [1, 0, -4, -12, -16, 4, 32, -168, -1376, -5100, ...];
n=3: [1, 0, 0, 8, 24, 32, 88, 512, 1968, 6144, ...];
n=4: [1, 0, 0, 0, -16, -48, -64, -176, -640, -1632, ...];
n=5: [1, 0, 0, 0, 0, 32, 96, 128, 352, 1280, ...];
n=6: [1, 0, 0, 0, 0, 0, -64, -192, -256, -704, ...];
n=7: [1, 0, 0, 0, 0, 0, 0, 128, 384, 512, ...];
n=8: [1, 0, 0, 0, 0, 0, 0, 0, -256, -768, ...];
...
Limit_{n->infinity} (1 - P(n))/(-2*x)^n = 1 + 3*x + 4*x^2 + 11*x^3 + 40*x^4 + 150*x^5 + 552*x^6 + 1971*x^7 + 6952*x^8 + 24818*x^9 + ... + A351510(n)*x^n + ...
MATHEMATICA
P[1, n2_] = 1/Sqrt[1 - 4*x + x*O[x]^n2]; P[n1_, n2_] := 1/Sqrt[1 - 4*x + 4*x*P[n1 - 1, n2] + x*O[x]^n2]; CoefficientList[Product[P[n1, # - 1], {n1, 1, #}], x] &[27] (* Robert P. P. McKone, Feb 13 2022 *)
PROG
(PARI) N = 30 ; \\ number of desired terms
{a(n) = my(P = vector(N+1)); P[1] = 1/sqrt(1 - 4*x +x*O(x^N)); for(n=1, N,
P[n+1] = 1/sqrt(1 - 4*x + 4*x*P[n] +x*O(x^N) )); Vec(prod(n=1, N+1, P[n]))[n+1]}
for(n=0, N, print1(a(n), ", "))
CROSSREFS
Sequence in context: A003616 A276657 A079895 * A053047 A076143 A226585
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 12 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 14:49 EDT 2024. Contains 372554 sequences. (Running on oeis4.)