login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079895
a(1) = 1; a(n) = phi(n) - phi(n-1)* a(n-1) if n > 1.
0
1, 0, 2, -2, 8, -30, 66, -392, 1574, -9440, 37770, -377696, 1510796, -18129546, 108777284, -870218264, 6961746128, -111387938042, 668327628270, -12029897308852, 96239178470828, -1154870141649926, 11548701416499282, -254071431162984196, 2032571449303873588
OFFSET
1,3
COMMENTS
1. Let s(n) be a sequence such that lim s(n)/s(n+1) = K different from -1. The "oscillator sequence" (or simply "oscillator") of s(n) is the sequence s'(n) defined by the rules: s'(1) = 1; s'(n) = 1 - (s(n-1)/s(n)) s'(n-1). 2. It is an open problem whether the oscillator (prime)' converges to 1/2 or diverges. 3. s'(n) = 1 - (s(n-1)/s(n)) s'(n-1) = [s(n) - s(n-1) s'(n-1)]/s(n). The numerator is the expression s(n) - s(n-1) s'(n-1), which motivates the definition of the above sequence a(n). a(n) is called the "integral oscillator" of phi(n). In general the integral oscillator of s(n) can be defined similarly.
MATHEMATICA
t = {1}; gt = 1; For[i = 2, i <= 30, i++, gt = EulerPhi[i] - EulerPhi[i - 1] gt; t = Append[t, gt]]; t ListPlot[t, PlotJoined -> True]
CROSSREFS
Sequence in context: A287496 A003616 A276657 * A351512 A053047 A076143
KEYWORD
sign
AUTHOR
Joseph L. Pe, Feb 20 2003
STATUS
approved