login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351402
G.f. A(x) satisfies: 1 / (1 - x) = Product_{i>=1, j>=1} A(x^(i*j)).
1
1, 1, -1, -3, -1, 1, 4, 2, -2, -5, 4, 2, -2, -10, 3, 10, 21, -15, -26, -23, 34, 28, 25, -54, -18, 2, 67, -48, -22, -55, 116, 44, 37, -227, -10, 32, 295, -85, -76, -336, 254, 74, 250, -451, 59, -127, 672, -294, -69, -761, 740, 77, 657, -1208, 59, -450, 1700, -487, 241, -1892, 1202
OFFSET
0,4
COMMENTS
Euler transform of A007427.
FORMULA
G.f. A(x) satisfies: 1 / (1 - x) = Product_{k>=1} A(x^k)^A000005(k).
G.f.: Product_{k>=1} 1 / (1 - x^k)^A007427(k).
G.f.: exp( Sum_{k>=1} A101035(k) * x^k / k ).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} A101035(k) * a(n-k).
MATHEMATICA
nmax = 60; A007427[n_] := Sum[MoebiusMu[d] MoebiusMu[n/d], {d, Divisors[n]}]; CoefficientList[Series[Product[1/(1 - x^k)^A007427[k], {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Feb 10 2022
STATUS
approved