login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351396
Composite numbers d such that the period k of the decimal expansion of 1/d is > 1 and divides d-1.
3
33, 55, 91, 99, 148, 165, 175, 246, 259, 275, 325, 370, 385, 451, 481, 495, 496, 505, 561, 592, 656, 657, 703, 715, 825, 909, 925, 1035, 1045, 1105, 1233, 1375, 1476, 1480, 1626, 1729, 1825, 1912, 2035, 2120, 2275, 2368, 2409, 2465, 2475, 2525, 2556, 2752, 2821
OFFSET
1,1
COMMENTS
For primes p, the period k of the decimal expansion of 1/p divides p-1. This is usually not the case for reciprocals of composites d; instead, the period k always divides phi(d) where phi is Euler's totient function (A000010). This sequence lists the composites d for which k also divides d-1, which satisfies the condition of a pseudoprime, making such composites a sequence of pseudoprimes with respect to the divisibility of d-1 by k.
LINKS
EXAMPLE
33 is a term since 1/33 = 0.030303..., its repetend is 03 so its period is 2, and 2 divides 33-1.
91 is a term since 1/91 = 0.010989010989..., its repetend is 010898 so its period is 6, and 6 divides 91-1.
925000 is a term since 1/925000 = 0.00000108108... has a repetend of 108 and a period of 3, and 3 divides 925000-1.
PROG
(Python)
from itertools import count, islice
from sympy import n_order, multiplicity, isprime
def A351396_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda d: not (isprime(d) or (p := n_order(10, d//2**multiplicity(2, d)//5**multiplicity(5, d))) <= 1 or (d-1) % p), count(max(startvalue, 1)))
A351396_list = list(islice(A351396_gen(), 50)) # Chai Wah Wu, May 19 2022
CROSSREFS
Cf. A007732 (digits period), A000010 (totient).
Sequence in context: A075810 A132288 A242605 * A350598 A260872 A039380
KEYWORD
nonn,base
AUTHOR
Barry Smyth, Mar 24 2022
STATUS
approved