login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351105
a(n) = Sum_{k=1..n} Sum_{j=1..k} Sum_{i=1..j} (i*j*k)^2.
4
0, 1, 85, 1408, 11440, 61490, 251498, 846260, 2458676, 6369275, 15047175, 32955780, 67746900, 131969604, 245444980, 438485080, 756163672, 1263878005, 2054474617, 3257248280, 5049161480, 7668672374, 11432601950, 16756516140, 24179145900, 34391417775
OFFSET
0,3
COMMENTS
a(n) is the sum of all products of three squares of positive integers up to n, i.e., the sum of all products of three elements from the set of squares {1^2, ..., n^2}.
LINKS
Roudy El Haddad, Recurrent Sums and Partition Identities, arXiv:2101.09089 [math.NT], 2021.
Roudy El Haddad, A generalization of multiple zeta value. Part 1: Recurrent sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199.
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = n*(n+1)*(n+2)*(n+3)*(2n+1)*(2n+3)*(2n+5)*(35*n^2-21*n+4)/45360 (from the recurrent form of Faulhaber's formula).
a(n) = (1/(9!*2))*((2n+6)!/(2n-1)!)*(35*n^2-21*n+4).
a(n) = binomial(2n+6,7)*(35*n^2-21*n+4)/144.
G.f.: x*(36*x^5+460*x^4+1065*x^3+603*x^2+75*x+1)/(x-1)^10. - Alois P. Heinz, Jan 31 2022
MATHEMATICA
CoefficientList[Series[x (36 x^5 + 460 x^4 + 1065 x^3 + 603 x^2 + 75 x + 1)/(x - 1)^10, {x, 0, 25}], x] (* Michael De Vlieger, Feb 04 2022 *)
LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 1, 85, 1408, 11440, 61490, 251498, 846260, 2458676, 6369275}, 30] (* Harvey P. Dale, Jul 18 2022 *)
PROG
(PARI) {a(n) = n*(n+1)*(n+2)*(n+3)*(2*n+1)*(2*n+3)*(2*n+5)*(35*n^2-21*n+4)/45360};
(PARI) a(n) = sum(i=1, n, sum(j=1, i, sum(k=1, j, i^2*j^2*k^2)));
(Python)
def A351105(n): return n*(n*(n*(n*(n*(n*(n*(n*(280*n + 2772) + 10518) + 18711) + 14385) + 1323) - 2863) - 126) + 360)//45360 # Chai Wah Wu, Feb 17 2022
CROSSREFS
A diagonal of A036969.
Cf. A000290 (squares), A000330 (sum of squares), A060493 (for two squares).
Cf. A001297 (for power 1).
Sequence in context: A189439 A166917 A206377 * A008360 A212474 A020310
KEYWORD
nonn,easy
AUTHOR
Roudy El Haddad, Jan 31 2022
STATUS
approved