login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351074
Difference between the maximal exponent in the prime factorization of A327860(n) and the maximal exponent in the prime factorization of n.
6
0, -1, 0, -1, 0, -1, 0, 0, -1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 2, 0, 1, 2, -1, 1, -4, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 1, 0, 1, 0, 2, 0, 2, 2, 2, -1, 0, 0, -1, -4, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, -1, 0, 1, 1, 3, -2, 1, 1, 1, 2, 2, 2, 0, 2, 0, 1, 2, 1, 1, 1, -3, 1, 0, 0, 1, 1, 1, 1, -1, 1
OFFSET
1,26
FORMULA
a(n) = A328391(n) - A051903(n) = A051903(A327860(n)) - A051903(n).
PROG
(PARI)
A051903(n) = if((1==n), 0, vecmax(factor(n)[, 2]));
A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); };
A351074(n) = (A051903(A327860(n)) - A051903(n));
CROSSREFS
Cf. A351075 (positions of negative terms), A351076 (of terms >= 0), A351077 (their characteristic function).
Cf. also A350074.
Sequence in context: A092130 A029298 A262520 * A059835 A274659 A274661
KEYWORD
sign,base
AUTHOR
Antti Karttunen, Feb 01 2022
STATUS
approved