|
|
A351050
|
|
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - 4*x)) / (1 - 4*x).
|
|
7
|
|
|
1, 1, 1, 5, 25, 129, 713, 4373, 30289, 235041, 1998001, 18226117, 176364969, 1803064033, 19463340729, 221691818005, 2658751147297, 33458500940993, 440140082161121, 6032572875160069, 85936355674437561, 1270176766188103105, 19453176663852208937
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Shifts 2 places left under 4th-order binomial transform.
|
|
LINKS
|
|
|
FORMULA
|
a(0) = a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 4^k * a(n-k-2).
|
|
MATHEMATICA
|
nmax = 22; A[_] = 0; Do[A[x_] = 1 + x + x^2 A[x/(1 - 4 x)]/(1 - 4 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 4^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 22}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|