login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351050
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - 4*x)) / (1 - 4*x).
7
1, 1, 1, 5, 25, 129, 713, 4373, 30289, 235041, 1998001, 18226117, 176364969, 1803064033, 19463340729, 221691818005, 2658751147297, 33458500940993, 440140082161121, 6032572875160069, 85936355674437561, 1270176766188103105, 19453176663852208937
OFFSET
0,4
COMMENTS
Shifts 2 places left under 4th-order binomial transform.
LINKS
FORMULA
a(0) = a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 4^k * a(n-k-2).
MATHEMATICA
nmax = 22; A[_] = 0; Do[A[x_] = 1 + x + x^2 A[x/(1 - 4 x)]/(1 - 4 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 4^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 22}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 30 2022
STATUS
approved