login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060928
Expansion of 1/(1 - 5*x - 4*x^3).
6
1, 5, 25, 129, 665, 3425, 17641, 90865, 468025, 2410689, 12416905, 63956625, 329425881, 1696797025, 8739811625, 45016761649, 231870996345, 1194314228225, 6151638187721, 31685674923985, 163205631532825
OFFSET
0,2
FORMULA
G.f.: 1/(1 - 5*x - 4*x^3).
a(n) = 5*a(n-1) + 4*a(n-3), n >= 3, a(n) = 5^n, n = 0, 1, 2.
MAPLE
m:= 40; S:= series( 1/(1-5*x-4*x^3), x, m+1);
seq(coeff(S, x, j), j = 0..m); # G. C. Greubel, Apr 07 2021
MATHEMATICA
CoefficientList[Series[1/(1-5x-4x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[ {5, 0, 4}, {1, 5, 25}, 30] (* Harvey P. Dale, Apr 09 2018 *)
PROG
(PARI) { for (n=0, 30, if (n>2, a=5*a1 + 4*a3; a3=a2; a2=a1; a1=a, if (n==0, a=a3=1, if (n==1, a=a2=5, a=a1=25))); print1(a, ", "); ) } \\ Harry J. Smith, Jul 14 2009
(Magma) I:=[1, 5, 25, 129]; [n le 3 select I[n] else 5*Self(n-1) + 4*Self(n-3): n in [1..31]]; // G. C. Greubel, Apr 07 2021
(Sage)
def A060928_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( 1/(1-5*x-4*x^3) ).list()
A060928_list(30) # G. C. Greubel, Apr 07 2021
CROSSREFS
Sequence in context: A082308 A270767 A026718 * A002002 A182626 A351050
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 20 2001
STATUS
approved