login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350964
a(n) is the largest prime factor of 2^p - p^2 where p is the n-th prime.
2
7, 79, 47, 113, 130783, 523927, 1198297, 240641, 641, 575058377, 1519711993, 65929327, 20105355479017, 9007199254738183, 7633399, 33189241, 21081993227096629777, 951850902549409, 4978773308244222679, 501615233613780359, 9671406556917033397642519, 8251206137, 3818597055399121, 13314319257913, 521211122055087383048446607
OFFSET
3,1
COMMENTS
All prime factors of 2^p - p^2 are congruent to 1 or 7 (mod 8). (See A001132.) - Robert G. Wilson v, Mar 14 2022
REFERENCES
E.-B. Escott, Note #1642, L'Intermédiaire des Mathématiciens, 8 (1901), page 12.
FORMULA
a(n) = A006530(A098105(n)). - Amiram Eldar, Mar 03 2022
MAPLE
a:= n-> max(numtheory[factorset]((p-> 2^p-p^2)(ithprime(n)))):
seq(a(n), n=3..27); # Alois P. Heinz, Mar 03 2022
MATHEMATICA
a[n_] := FactorInteger[2^(p = Prime[n]) - p^2][[-1, 1]]; Array[a, 25, 3] (* Amiram Eldar, Mar 03 2022 *)
PROG
(PARI) a(n) = my(p=prime(n)); vecmax(factor(2^p - p^2)[, 1]); \\ Michel Marcus, Mar 03 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 02 2022
STATUS
approved