login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350924
a(0) = 1, a(1) = 3, and a(n) = 16*a(n-1) - a(n-2) - 4 for n >= 2.
9
1, 3, 43, 681, 10849, 172899, 2755531, 43915593, 699893953, 11154387651, 177770308459, 2833170547689, 45152958454561, 719614164725283, 11468673677149963, 182779164669674121, 2912997961037635969, 46425188211932501379, 739890013429882386091, 11791815026666185676073
OFFSET
0,2
COMMENTS
One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.
FORMULA
G.f.: (1 - 14*x + 9*x^2)/((1 - x)*(1 - 16*x + x^2)). - Stefano Spezia, Jan 22 2022
7*a(n) = 2 +5*A077412(n) -61*A077412(n-1). - R. J. Mathar, Feb 07 2022
MATHEMATICA
nxt[{a_, b_}]:={b, 16b-a-4}; NestList[nxt, {1, 3}, 20][[All, 1]] (* or *) LinearRecurrence[ {17, -17, 1}, {1, 3, 43}, 20] (* Harvey P. Dale, Jan 08 2023 *)
PROG
(Python)
a350924 = [1, 3]
for k in range(2, 100): a350924.append(16*a350924[k-1]-a350924[k-2]-4)
print(a350924) # Karl-Heinz Hofmann, Jan 22 2022
CROSSREFS
Cf. A350916.
Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350922, A350923, A350925, A350926.
Sequence in context: A211959 A283514 A299506 * A141060 A361878 A277496
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Jan 22 2022
STATUS
approved