login
A350863
Primes p such that p and p+6 are consecutive primes, and p+36 and p+42 are consecutive primes.
1
47, 131, 331, 557, 571, 941, 977, 1181, 1187, 1621, 1741, 2677, 3691, 3761, 4561, 4951, 5407, 5521, 5807, 5861, 6037, 6317, 6337, 6977, 7481, 7541, 7681, 8081, 8887, 10847, 11897, 12511, 12541, 12547, 12577, 13591, 14717, 15227, 15271, 15761, 15767, 19231, 19441, 22031, 22901, 23167, 25111, 25147
OFFSET
1,1
COMMENTS
Intersection of A031924 and its translate by -36.
LINKS
EXAMPLE
a(3) = 331 is a term because 331 and 331+6 = 337 are consecutive primes and 331+36 = 367 and 331+42 = 373 are consecutive primes.
MAPLE
P:= {seq(ithprime(i), i=1..3000)}:
R:= P intersect map(`-`, P, 6) intersect map(`-`, P, 36) intersect map(`-`, P, 42) minus map(`-`, P, 2) minus map(`-`, P, 4) minus map(`-`, P, 38) minus map(`-`, P, 40):
sort(convert(R, list));
MATHEMATICA
Select[Range[25000], And @@ PrimeQ[(ps = # + {0, 36})] && NextPrime[ps] == ps + {6, 6} &] (* Amiram Eldar, Jan 20 2022 *)
Select[Select[Partition[Prime[Range[3000]], 2, 1], #[[2]]-#[[1]]==6&][[;; , 1]], PrimeQ[#+36]&& NextPrime[ #+36] ==#+42&] (* Harvey P. Dale, Mar 04 2024 *)
CROSSREFS
Cf. A031924.
Sequence in context: A235176 A044298 A044679 * A253225 A039530 A288408
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jan 19 2022
STATUS
approved