login
A350834
Number of ways to tile an n X n right triangle with squares and dominoes, where vertical dominoes are only allowed in the largest vertical column.
1
1, 1, 3, 11, 73, 749, 12657, 343693, 15140923, 1078147567, 124268659473, 23172219304577, 6991754237772409, 3413365649747365697, 2696315730346059254139, 3446235324323962173174283, 7127008624714819485698797681, 23848280807640171362927751869341
OFFSET
0,3
COMMENTS
This is the third column in A229556.
FORMULA
a(n) = Fibonacci(n+1)*a(n-1) + Fibonacci(n)*Fibonacci(n-1)*a(n-2).
a(n) = P(n+1) + Sum_{i=2..n} a(i-1)*Fibonacci(i-1)*Fibonacci(n-(i-1))*P(n)/P(i), where P(n) = A003266(n) the product of the first n Fibonacci numbers. - Greg Dresden and Tianle Tina Yao, Jul 03 2022
EXAMPLE
Here is one of the 73 tilings for the n=4 case. Note that vertical dominoes are only allowed in the "first" column.
. _
| |_
|_|_|_
| |___|_
|_|_|___|
MATHEMATICA
T[0] = 1; T[1] = 1; T[n_] := T[n] = Fibonacci[n + 1] T[n - 1] + (Fibonacci[n] Fibonacci[n - 1]) T[n - 2]; Table[T[n], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Greg Dresden and Tianle Tina Yao, Jun 12 2022
STATUS
approved