login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350553
a(n) is the smallest number k for which A000120(k) = A000120(k') = n, or -1 if no such k exists, where k' is the arithmetic derivative of k (A003415).
0
0, 2, 6, 22, 27, 110, 175, 502, 894, 2037, 3775, 8182, 24558, 49142, 98286, 196598, 655323, 524278, 2088950, 2097142, 6291438, 16515062, 15728575, 62914175, 100663278, 134217718, 528482294, 939524086, 2145386486, 3221225454, 11811159998, 8589934582, 47244640246
OFFSET
0,2
COMMENTS
Conjecture. a(n) >= 0 for all n.
EXAMPLE
0' = 0, A000120(0) = A000120(0') = 0, so a(0) = 0.
1' = 0, A000120(1) = 1, A000120(1') = 0. 2 = 10_2, 2' = 1 = 1_0, so A000120(2) = A000120(2') = 1 and a(1) = 2.
MATHEMATICA
bw[n_] := DigitCount[n, 2, 1]; d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); seq[m_, nmax_] := Module[{s = Table[-1, {m + 1}], c = 0, n = 0, i}, While[c < m + 1 && n < nmax, i = bw[n] + 1; If[i <= m && s[[i]] < 0, If[bw[d[n]] + 1 == i, c++; s[[i]] = n]]; n++]; TakeWhile[s, # > -1 &]]; seq[16, 10^6] (* Amiram Eldar, Jan 27 2022 *)
PROG
(Magma) f:=func<n |n le 1 select 0 else n*(&+[Factorisation(n)[i][2] / Factorisation(n)[i][1]: i in [1..#Factorisation(n)]])>; a:=[]; for n in [0..22] do k:=2^n-1 ; while &+Intseq(k, 2) ne n or &+Intseq( Floor(f(k)), 2) ne n do k:=k+1; end while; Append(~a, k*1); end for; a;
(PARI) d(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
a(n) = my(k=2^n-1); while ((hammingweight(k) != n) || (hammingweight(d(k)) != n), k++); k; \\ Michel Marcus, Jan 25 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Marius A. Burtea, Jan 24 2022
EXTENSIONS
a(30)-a(32) from Jinyuan Wang, Jan 27 2022
STATUS
approved