login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350551
Convolution of Jacobsthal numbers and Pell numbers.
0
0, 0, 1, 3, 10, 28, 77, 203, 526, 1340, 3377, 8435, 20930, 51660, 126981, 311083, 760070, 1853068, 4509897, 10960243, 26605146, 64520060, 156344317, 378606795, 916354110, 2216907420, 5361353761, 12961984563, 31330062130, 75711587308, 182932193717
OFFSET
0,4
COMMENTS
a(n) is the convolution of the Jacobsthal numbers A001045 with the Pell numbers A000129. To be precise, a(n) = Sum_{i=0..n} A001045(i)*A000129(n-i).
REFERENCES
G. Dresden and M. Tulskikh, Convolutions of Sequences with Single-Term Signature Differences, preprint.
LINKS
Tamás Szakács, Convolution of second order linear recursive sequences I., Annales Mathematicae et Informaticae 46 (2016) pp. 205-216.
FORMULA
a(n) = Sum_{i=0..n} J(i)*P(n-i) for P(n) = A000129(n), J(n) = A001045(n).
a(n) = (P(n+1) + P(n) - J(n+2))/2 for P(n) = A000129(n), J(n) = A001045(n).
G.f.: x^2/(1 - 3*x - x^2 + 5*x^3 + 2*x^4).
MATHEMATICA
Table[Sum[((2^i - (-1)^i)/3) Fibonacci[n - i, 2], {i, 0, n}], {n, 0,
30}]
CROSSREFS
Sequence in context: A320244 A128135 A374636 * A191797 A355356 A027252
KEYWORD
nonn
AUTHOR
Greg Dresden, Jan 04 2022
STATUS
approved