OFFSET
0,4
LINKS
Alois P. Heinz, Rows n = 0..200, flattened
FORMULA
E.g.f. column k: exp(W(-x))*(-x - W(-x))^k / ((1 + W(-x))*k!), W(x) the Lambert W-function. - Mélika Tebni, Nov 22 2022
From Mélika Tebni, Dec 22 2022: (Start)
For n > 1, T(n,1) = n*A045531(n-1).
Sum_{k=0..n} (-1)^(n-k)*T(n+k,k) = 2^n.
Sum_{k=0..n} (-1)^(n-k)*T(n+k,k)/(n+k-1) = 1/n, for n > 1. (End)
EXAMPLE
Triangle T(n,k) begins:
1;
0;
1, 2;
8, 9;
81, 76, 12;
1024, 875, 180;
15625, 12606, 2910, 120;
279936, 217217, 53550, 3780;
5764801, 4348856, 1118936, 102480, 1680;
134217728, 99111735, 26280072, 2817360, 90720;
3486784401, 2532027610, 686569050, 81864720, 3729600, 30240;
...
MAPLE
c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end:
t:= proc(n) option remember; n^(n-1) end:
b:= proc(n) option remember; expand(`if`(n=0, 1, add(b(n-i)*
binomial(n-1, i-1)*(c(i)+`if`(i=1, 0, x*t(i))), i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
seq(T(n), n=0..12);
# second Maple program:
egf := k-> exp(LambertW(-x))*(-x-LambertW(-x))^k/((1+LambertW(-x))*k!):
A350454 := (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(print(seq(A350454(n, k), k=0..n/2)), n=0..9); # Mélika Tebni, Nov 22 2022
MATHEMATICA
c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}];
t[n_] := t[n] = n^(n - 1);
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n - i]*
Binomial[n - 1, i - 1]*(c[i] + If[i == 1, 0, x*t[i]]), {i, 1, n}]]];
T[n_] := With[{p = b[n]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 06 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Dec 31 2021
STATUS
approved