login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350412
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies: 0 = [x^n] Sum_{m=0..2*n} (A(x) - 1)^(m^2) / m!, for n > 1, with A(0) = 0.
2
1, 12, 830, 1867901, 251714851830, 3696867014099083814, 8468768030682252554158546818, 4074040763513889480730186336041282515610, 533088609878310228401628064629048305794583364205468626, 23856105278172150534783174192628043609641782797360374708050534816035626
OFFSET
1,2
COMMENTS
This sequence is conjectured to consist entirely of integers.
EXAMPLE
G.f.: A(x) = x + 12*x^2 + 830*x^3 + 1867901*x^4 + 251714851830*x^5 + 3696867014099083814*x^6 + 8468768030682252554158546818*x^7 + ...
The table of coefficients of x^k in (A(x) - 1)^(n^2), k >= 0, begins:
n=1: [-1, 1, 12, 830, 1867901, 251714851830, ...];
n=2: [1, -4, -42, -3180, -7460923, -1006836884628, ...];
n=3: [-1, 9, 72, 6690, 16749063, 2265298700004, ...];
n=4: [1, -16, -72, -10960, -29688276, -4026988495968, ...];
n=5: [-1, 25, 0, 15850, 46226475, 6291750745680, ...];
n=6: [1, -36, 198, -21900, -66306051, -9059386973652, ...];
n=7: [-1, 49, -588, 30870, 89857033, 12329656582362, ...];
n=8: [1, -64, 1248, -46400, -116773328, -16102277850240, ...];
n=9: [-1, 81, -2268, 74790, 146862801, 20376929526066, ...];
n=10: [1, -100, 3750, -125900, -179760275, -25153253915220, ...]; ...
in which, by definition, the following sums along the columns equal zero:
0 = (12)/1! + (-42)/2! + (72)/3! + (-72)/4! ;
0 = (830)/1! + (-3180)/2! + (6690)/3! + (-10960)/4! + (15850)/5! + (-21900)/6! ;
0 = (1867901)/1! + (-7460923)/2! + (16749063)/3! + (-29688276)/4! + (46226475)/5! + (-66306051)/6! + (89857033)/7! + (-116773328)/8! ;
0 = (251714851830)/1! + (-1006836884628)/2! + (2265298700004)/3! + (-4026988495968)/4! + (6291750745680)/5! + (-9059386973652)/6! + (12329656582362)/7! + (-16102277850240)/8! + (20376929526066)/9! + (-25153253915220)/10! ; ...
One may continue the above pattern to determine all the terms of this sequence.
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = (2*#A-1)! * polcoeff( sum(m=0, 2*#A, (-1 + x*Ser(A))^(m^2) / m!) , #A) ); A[n]}
for(n=1, 15, print1(a(n), ", "))
CROSSREFS
Sequence in context: A356186 A003748 A280333 * A207817 A349468 A203410
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 29 2021
STATUS
approved