login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003748
Number of 2-factors in K_5 X P_n.
1
12, 814, 41278, 2169266, 113488662, 5940718514, 310952704838, 16276223002786, 851946706852182, 44593472067545554, 2334157405518854758, 122176869250651741826, 6395107433748612174582, 334739295101566253176754, 17521268695699930046150918, 917116278846033398175880546
OFFSET
1,1
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
FORMULA
a(1) = 12,
a(2) = 814,
a(3) = 41278, and
a(n) = 47a(n-1) + 288a(n-2) - 436a(n-3).
G.f.: -2*x*(218*x^2-125*x-6)/(436*x^3-288*x^2-47*x+1). - Colin Barker, Aug 30 2012
MATHEMATICA
CoefficientList[Series[-2 (218 x^2 - 125 x - 6)/(436 x^3 - 288 x^2 - 47 x + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 14 2013 *)
LinearRecurrence[{47, 288, -436}, {12, 814, 41278}, 20] (* Harvey P. Dale, May 05 2022 *)
PROG
(Magma) I:=[12, 814, 41278]; [n le 3 select I[n] else 47*Self(n-1)+288*Self(n-2)-436*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 14 2013
CROSSREFS
Sequence in context: A305935 A228182 A356186 * A280333 A350412 A207817
KEYWORD
nonn,easy
EXTENSIONS
Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009
STATUS
approved